
 FHSCC '95 PROBLEMS  1  

         FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
 
 
1.1  Write a program to display the following lines, each beginning 
at the left most column of the screen: 
 
        FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
        59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 
        FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
        59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 
        FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
        59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 
        FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
        59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 
 
 
1.2  Comments are used to explain sections of programming code.  A 
comment statement is implemented a little differently in BASIC, 
Pascal, C, and C++. In BASIC, comments usually begin with an 
apostrophe (') but may also begin with the characters REM (short 
for REMARK).  In Pascal, comments are usually delimited by curly 
braces ( { and } ) but can be delimited by a parenthesis-asterisk 
and an asterisk-parenthesis { (* and *) }.  In C, comments are only 
delimited by a slash-asterisk and an asterisk-slash ( /* and */ ). 
In C++, comments usually begin with a double slash ( // ) but can 
be delimited by the same characters that the language C uses.  
 
Write a program to accept as input a generic comment and then 
display it in the format commonly used by each of the languages 
mentioned.  Example: 
 
     INPUT: Enter comment: THIS PROGRAM WILL GENERATE COMMENTS 
 
    OUTPUT: BASIC: ' THIS PROGRAM WILL GENERATE COMMENTS 
            PASCAL: { THIS PROGRAM WILL GENERATE COMMENTS } 
            C: /* THIS PROGRAM WILL GENERATE COMMENTS */ 
            C++: // THIS PROGRAM WILL GENERATE COMMENTS 
 
 
 
1.3  The C/C++ language includes two unary operators that are not 
found in other programming languages:  the increment (++) and the 
decrement (--) operators.  Increment adds one to a variable, and 
the decrement subtracts one from a variable; Thus, the language C++ 
is known as an incremental improvement over the language C. 
 
Write a program to accept as input an integer N along with either 
the increment or decrement operator, and then display the new value 
for N: If N=-3 then N++ makes N=-2, and N-- makes N=-4.  Examples: 
 
     INPUT: Enter N: 5                 INPUT: Enter N: 20 
            Enter operator: ++                Enter operator: -- 
    OUTPUT: 6                         OUTPUT: 19 



2  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

1.4  Rounding off to three decimal places usually uses the rule 
that if the ten thousandth's digit is 5 or larger then round up, 
and if it is 4 or smaller then round down.  The number 5 is called 
the break point.  Write a program to accept as input a break point 
as any digit from 1 to 9 and accept as input a decimal number less 
than 10, and then display the number rounded to three decimal 
places.  Examples: 
 
     INPUT: Enter break point: 7     INPUT: Enter break point: 7 
            Enter number: 1.3766            Enter number: 9.47979 
    OUTPUT: 1.376                   OUTPUT: 9.480 
 
 
1.5  Time Sharing Option/Extensions (TSO/E) and Interactive System 
Productivity Facility (ISPF/PDF) are very useful for accessing a 
mainframe computer.  REXX and CLIST are the two interpretative 
programming languages that can issue TSO and ISPF/PDF commands.  
REXX (REstructured eXtended eXecutor) and CLIST (Command LIST) code 
can be executed in the foreground within the MVS operating system. 
Since both languages are interpretative, each line is interpreted, 
and then executed, one line at a time, starting with the first 
line.  The programs can be executed without being compiled and 
link-edited.  BASIC is also commonly used as an interpretative 
programming language.  Most other languages must be compiled and 
link-edited to create executable program modules. 
 
CLIST is basically a command processor with limited programming 
functionality.  REXX is a full application development programming 
language.  REXX's structure and syntax closely resembles the 
language Pascal and to a lesser degree, PL/I.  PL/I utilizes 
features from both COBOL (a business language) and FORTRAN (a 
scientific/mathematical language).  REXX became the standard 
procedure language for IBM's System Application Architecture (SAA) 
in 1987, which means REXX is implemented across IBM's product line 
and used under several operating system environments.  Starting 
with TSO/E Version 2, SYSPROC libraries can hold both CLIST and 
REXX programs, but the operating system needs to know what kind of 
program to execute.  Therefore all REXX code stored in SYSPROC must 
start with a comment line that contains the word REXX on the first 
line. 
 
Write a program to accept as input the first line of code as a 
comment and to display whether the operating system would interpret 
the program as a CLIST or a REXX.  All comments begin with /* and 
end with */.  If the four contiguous characters, REXX, appear 
somewhere in the first line of the comment then the operating 
system would interpret the code as a REXX program, otherwise it is 
seen as a CLIST program.  Examples: 
 
     INPUT: Enter comment: /* RESTRUCTURED EXTENDED EXECUTOR */ 
    OUTPUT: CLIST 
 
     INPUT: Enter comment: /* MY FIRST REXX-PROGRAM */ 
    OUTPUT: REXX 



 FHSCC '95 PROBLEMS  3  

1.6  In order to do well in a computer contest such as the 
FHSCC'95, a team must be quick in writing small programs.  Any one 
of the following languages may be used in the contest: BASIC, 
Pascal, C, or C++.  Beginners All-Purpose Symbolic Instruction Code 
(BASIC) was developed in the 1960's at Dartmouth College and was 
originally used on mainframes before becoming the most widely used 
programming language for microcomputers.  BASIC is very easy to 
learn and the new versions contain powerful programming statements. 
Niklaus Wirth developed a new language in the early 1970's and 
named it after the 17th century mathematician, Blaise Pascal.  
Pascal is a highly structured and easy-to-maintain programming 
language that allows programmers to produce efficient programs.  
Dennis Ritchie at the Bell Telephone Laboratories developed a new 
language in order to design their UNIX operating system in 1972: C. 
Although C uses more special operators and symbols than most other 
languages (making it cryptic), C is the most popular professional 
programming language for microcomputers, enabling programmers to 
produce highly efficient code.  AT&T's Bell Laboratories created 
the first C++ language in the 1980's to improve the way C works.  
C++ is an efficient language that has better C commands and the 
capability of using object-oriented programming (OOP). 
 
Although BASIC, Pascal, and C/C++ are all good programming 
languages to use in this contest, programming in BASIC tends to be 
quicker to code since most variables do not need to be declared nor 
initialized.  Pascal and C/C++ require that all variables be 
defined before they are used, whereas BASIC does not require a 
variable to be defined before it is used and automatically 
initializes all numeric variables to 0 and all strings to null.  
For example, to write the BASIC code "SUM = SUM + I + J" 
equivalently in either Pascal or C/C++ requires an additional 
appearance of the three variables by defining them before they are 
used (i.e. "var SUM, I, J: real;", or "float SUM, I, J;", 
respectively).  An additional statement is required in Pascal to 
initialize SUM to zero (i.e. "SUM = 0;"), whereas C/C++ can 
initialize at the same time a variable is defined (i.e. "float 
SUM=0, I, J;").  Moreover, C/C++ can initialize variables "I" and 
"J" to a non-zero number at the same time they are defined, whereas 
both BASIC and Pascal must have a separate statement that assigns 
"I" and "J" to a non-zero number. 
 
Write a program to accept as input the number of numeric variables 
used in a program and the number of those variables that need to be 
initialized and of those the number that need to be initialized 
specifically to zero, and then display the least number of times 
the variables must appear in declarations or statements before they 
may be used in a program for each of the three languages. 
 
     INPUT: Enter number of variables: 6 
            Enter number initialized: 4 
            Enter number initialized to 0: 3 
    OUTPUT: BASIC = 1 
            PASCAL = 10 
            C/C++ = 6 



4  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

1.7  Frank is called a "toolie" in the Configuration Management 
group on the CBSS project because he develops tools (programs using 
REXX) to assist the CM technicians in their daily tasks on the 
mainframe computer.  Frank's programs need to read in files (data 
set names) and assimilate the last part of the data set name.  A 
"qualified data set" name has all the information necessary to 
locate the data set via the system catalog and consists of two or 
more unqualified data set names connected by periods.  These 
unqualified data set names (or qualifiers) consist of one to eight 
characters, the first being alphabetic or national (@, $, #) and 
the remaining characters must be alphameric, national, or a hyphen. 
The qualified data set names cannot be longer than 44 characters 
including the periods.  The high-level qualifier is the first 
qualifier (or unqualified name) in the data set name. 
 
Write a program to parse and display the last qualifier on a 
qualified data set name that is given as input.  Examples: 
 
     INPUT: Enter data set name: DT10005.REXX.EXEC 
    OUTPUT: EXEC 
 
     INPUT: Enter data set name: G001246.CBSFCONV.SPUFI.IN.CBST012 
    OUTPUT: CBST012 
 
 
 
 
1.8  Write a program to first accept as input a positive integer N 
less than 10.  Next, the program is to accept as input N real 
numbers between -9999.9999 and 9999.9999, inclusive, and then 
display these N real numbers in reverse order on the screen, 
exactly as they were input.  Example: 
 
     INPUT: Enter N: 5 
            Enter #: 1.23 
            Enter #: -123.40 
            Enter #: 999.9999 
            Enter #: 0.0 
            Enter #: -1234.4567 
 
    OUTPUT: -1234.4567 
            0.0 
            999.9999 
            -123.40 
            1.23 
 



 FHSCC '95 PROBLEMS  5  

1.9  Write a program to display a large 'X' on the screen made up 
of letter X's.  The program is to accept as input an odd number 
(between 3 and 15, inclusive) representing the number of X's to be 
displayed on each main diagonal.  The top-left and bottom-left 'X' 
must appear in column 1 on the screen.  Example: 
 
     INPUT: Enter number of X's: 7 
 
    OUTPUT: (Screen clears and the following appears) 
            X     X 
             X   X 
              X X 
               X 
              X X 
             X   X 
            X     X 
 
 
1.10  GTE is an environmentally conscious corporate citizen.  One 
of GTE's most environmentally impacting areas is the use of paper 
for phone bills.  Considering this, GTE has decided to print bills 
on both sides of the paper (duplex) and save the equivalent of 
3,000 80-foot trees per year.  Printing on both sides reduces the 
number of pages in each bill by approximately 30 percent.  In 
addition, this saves GTE a million dollars a month in the cost of 
forms and reduced postage charges.  Assume that there are only six 
bill pages (front and back) in the first ounce of a bill due to the 
weight of the return envelope and an average of two inserts.  
Assume that each ounce after the first can have 9 pages (front and 
back).  The long distance carriers have required that their bill 
pages not start on the back of any other carriers pages and that no 
other carrier appear on the back of their pages.  GTE pays 23 1/3 
cents per ounce for postage.  Fractional ounces are paid using the 
next whole ounce.  Tim has worked hard on developing this 
technology and would like to know how much GTE is saving so that 
management can adjust the postage budgets accordingly. 
 
Write a program to accept as input the number of printed sides in a 
bill, and of those, the number of sides that will have a blank back 
side, and then determine the postage savings for that bill (in the 
format ###.## CENTS), compared to the cost of postage for a bill 
where all pages are printed on one side only.  For example, if 50 
sides are printed and 7 of those are single sided then (50-7)/2= 22 
pages are double sided with duplex printing (total of 29 pages) as 
opposed to having 50 pages with single sided printing. Examples: 
 
     INPUT: Enter # of printed sides: 50 
            Enter # of single sided pages: 7 
    OUTPUT:  46.67 CENTS SAVED 
 
 
     INPUT: Enter # of printed sides: 62 
            Enter # of single sided pages: 10 
    OUTPUT:  70.00 CENTS SAVED 



6  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.1  Write a program to find that integral solution of (X,Y) for 
AX+BY=C for which X is as small a positive integer as possible and 
A, B, and C are input as integers between -100 and 100, inclusive. 
Examples: 
 
     INPUT: Enter A, B, C: 13, 21, 1 
    OUTPUT: (13,-8) 
 
     INPUT: Enter A, B, C: 17, -19, 1 
    OUTPUT: (9,8) 
 
 
2.2  Write a program to verify a "part number" by validating the 
check digit appearing in the units position.  The computation of 
the check digit involves multiplying by 2 every other digit of the 
original number, starting with the first, and adding these values 
and the remaining digits of the number together.  (Do not consider 
the right-most digit as a part of the number.)  The units digit of 
the result obtained is then subtracted from 9 to obtain the check 
digit, which was not used in the computation.  Using the part 
number in the first example below, 126547 becomes (1*2 + 6*2 + 4*2) 
+ 2 + 5 = 29, ==> 9 - 9 = 0, and 0 does not match 7.  The program 
is to accept as input a string of at most 20 digits, and display 
whether the part number is OKAY or in ERROR.  If it is in ERROR, 
then display the correct check digit.  Examples: 
 
     INPUT: Enter part number: 126547 
    OUTPUT: ERROR -- CHECK DIGIT SHOULD BE 0 
 
     INPUT: Enter part number: 1265400 
    OUTPUT: OKAY 
 
 
2.3  Since computer education is the future of this nation, an 
imaginary millionaire's club would like to reward the efforts of 
the winners of the computer contest with 13 million dollars.  Each 
of the winning teams will be awarded one of the following amounts: 
$1, $13, $169, $2197, $28561, $371293, and $4826809 (each a power 
of 13).  If each prize (that is awarded) is given at most 9 times 
and the sum of all the awards total 13 million dollars, then write 
a program to determine how many of each prize will be awarded to 
the computer teams.  Display the answer in the format below, where 
the symbol {#} represents a digit from 0 to 9: 
 
     OUTPUT: $1 = # 
             $13 = # 
             $169 = # 
             $2197 = # 
             $28561 = # 
             $371293 = # 
             $4826809 = # 
 



 FHSCC '95 PROBLEMS  7  

2.4  Directory Assistance operators can be very beneficial to a 
person who does not know the entire phone number that they would 
like to call.  A customer in the 813 area code may make up to three 
local Directory Assistance Calls (DAC) during each monthly billing 
period at no cost;  Thereafter, each DAC in the local area costs 25 
cents each.  DAC's made within the 813 area code that are 
considered long distance are charged 25 cents per call.  DAC's made 
to other area codes within Florida (i.e. 305, 407, 904) are charged 
40 cents per call.  DAC's made to places beyond Florida within the 
U.S. are charged 65 cents per call. International DAC's cost $3.00. 
 
Write a program to first accept as input the number of DAC's made 
during the monthly billing period for a customer whose phone is in 
the 813 area code.  The program is to then accept as input each DAC 
number and then display the cost associated with all these calls in 
the format ##.## DOLLARS.  Each input will consist of at most 11 
consecutive digits for a DAC.  The DAC variations are shown below: 
 
     1411 ...................... Local Directory Assistance 
     1 + 813 + 555-1212  ....... Numbers within area code 
     1 + area code + 555-1212 .. Numbers outside area code 
     00 ........................ International calls  
 
Example: 
 
     INPUT: Enter number of DAC's: 9 
            Enter DAC: 1411 
            Enter DAC: 1411 
            Enter DAC: 18135551212 
            Enter DAC: 00 
            Enter DAC: 14075551212 
            Enter DAC: 12025551212 
            Enter DAC: 1411 
            Enter DAC: 1411 
            Enter DAC: 1411 
 
     OUTPUT:  4.80 DOLLARS 
 



8  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.5  The new book entitled: FLORIDA HIGH SCHOOLS COMPUTING 
COMPETITION: PROBLEMS, JUDGING CRITERIA, BASIC SOLUTIONS, PASCAL 
SOLUTIONS: 1985 - 1994, by Douglas E. Woolley, contains 300 
intriguing programming contest items and solutions.  This 778 page 
book is a tool for enhancing computer programming skills and a 
preparation guide for those competing in contests such as this.  
The book is divided into four parts: Problems, Judging Criteria, 
BASIC solutions, and Pascal solutions.  Each part is divided into 
10 chapters corresponding to the years 1985 to 1994. 
 
Write a program to display the heading of a page of the book given 
the page number as input.  Assume that each chapter within a part 
has the same number of pages and that all pages are numbered 
consecutively and that the number of pages in each part is 180, 
140, 200, and 260, respectively.   Every even numbered page has in 
its heading the page number followed by 2 spaces and the title of 
the book:   FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1985 - 1994. 
Every odd numbered page has in its heading the abbreviated title 
(FHSCC) followed by a space, followed by an apostrophe and the last 
two digits of the year of the contest and a space, followed by one 
of the four parts of the book: PROBLEMS, JUDGING CRITERIA, BASIC 
SOLUTIONS, or PASCAL SOLUTIONS; followed by two spaces and the page 
number.  Examples: 
 
 INPUT: Enter page number: 8 
OUTPUT: 8  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1985 - 1994 
 
 
 INPUT: Enter page number: 51 
OUTPUT: FHSCC '87 PROBLEMS  51 
 
 
 INPUT: Enter page number: 181 
OUTPUT: FHSCC '85 JUDGING CRITERIA  181 
 
 
 INPUT: Enter page number: 755 
OUTPUT: FHSCC '94 PASCAL SOLUTIONS  755 
 
 
 INPUT: Enter page number: 444 
OUTPUT: 444  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1985 - 1994 
 



 FHSCC '95 PROBLEMS  9  

2.6  The Internal Revenue Service (IRS) has compiled a table of 
"Estimated Preparation Time" to complete and file Form 1040 and its 
schedules: 
                                                           Copying, 
                                                        assembling, 
                           Learning about  Preparing   and sending  
Form       Recordkeeping   the law/form    the form    form to IRS 
---------  --------------  --------------  --------------  ------- 
Form 1040  3 hr.,  8 min.  2 hr., 53 min.  4 hr., 41 min.  53 min. 
Sch. A     2 hr., 32 min.         26 min.  1 hr., 10 min.  27 min. 
Sch. B            33 min.          8 min.         17 min.  20 min. 
Sch. C     6 hr., 26 min.  1 hr., 10 min.  2 hr.,  5 min.  35 min. 
Sch. D            51 min.         42 min.  1 hr.,  1 min.  41 min. 
Sch. E     2 hr., 52 min.  1 hr.,  7 min.  1 hr., 16 min.  35 min. 
 
 
Write a program to enter at most 6 unique forms and display the 
total ESTIMATED PREPARATION TIME to complete all stages of the 
forms designated.  Valid input will consist of: 1040, A, B, C, D, 
or E;  Input is terminated by an invalid entry.  Output will be 
displayed with the minutes between 0 and 59 inclusive.  Examples: 
 
     INPUT: Enter form: D 
            Enter form: 1040 
            Enter form: NO 
 
    OUTPUT: 14 HR., 50 MIN. 
 
 
     INPUT: Enter form: B 
            Enter form: F 
 
    OUTPUT: 1 HR., 18 MIN. 
 



10  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.7  At GTE there are many investment incentives for employees, 
such as the 401K investment plan and the guaranteed stock returns. 
 
The 401K is a plan where an employee can contribute up to 16% of 
his/her income into investment funds.  The company will match each 
dollar with 75 cents, of the first 6% contributed, with a Company-
Matching Contribution, credited to the employee's account at the 
end of the year.  These combined funds have returned a yearly 
interest rate, ranging from 6% to 29%, that is added to the 
employee's account. 
 
Under the terms of the stock purchase plan, an employee can 
purchase one share of common stock for each full $100 of their 
annual basic rate of pay up to a maximum of 750 shares.  The 
company sells each share to the employee at a guaranteed 85% of the 
"Average Market Price."  If stock prices are higher at the end of 
the year than at the beginning, then the employee could earn more 
than 15% but never less. 
 
Write a program that will allow an employee to see how much he can 
profit by investing.  Input will first consist of the yearly salary 
and the percent of the 401K that will be contributed.  Next, the 
program is to display the number of shares the employee can 
purchase, and then accept as input the number of shares that are 
bought, followed by the closing market price of a share (which will 
be greater than the starting value).  Assume that stock prices (or 
"Average Market Price") start at $32.00 per share at the beginning 
of the year (thus employees purchase a share at $32.00 * 0.85), and 
14% is the return on the combined employee/company contributions to 
the 401K.  Output must consist of the company contribution, the 
401K return, the gain in stock, and the total of these three gains, 
all in the form #####.##.  Examples: 
 
     INPUT: Enter salary: 32080 
            Enter 401K %: 16 
    OUTPUT: YOU CAN PURCHASE UP TO 320 SHARES 
     INPUT: Enter number of shares: 320 
            Enter end of year price: 35.00 
    OUTPUT: COMPANY CONTRIBUTION:  1443.60 
                     401K RETURN:   920.70 
                      STOCK GAIN:  2496.00 
                      TOTAL GAIN:  4860.30 
 
 
     INPUT: Enter salary: 54321 
            Enter 401K %: 4 
    OUTPUT: YOU CAN PURCHASE UP TO 543 SHARES 
     INPUT: Enter number of shares: 100 
            Enter end of year price: 33.25 
    OUTPUT: COMPANY CONTRIBUTION:  1629.63 
                     401K RETURN:   532.35 
                      STOCK GAIN:   605.00 
                      TOTAL GAIN:  2766.98 



 FHSCC '95 PROBLEMS  11  

2.8  Write a program to replicate the following pattern on the 
screen, given as input the number of spiral loops to display (less 
than 6) and the letter to be used in the first spiral.  Each 
succeeding spiral will use the next letter in the alphabet (except 
Z is followed by A).  After accepting input, the screen clears and 
the first character of the spiral is centered on the screen.  
Example: 
 
     INPUT: Enter number of spiral loops: 4 
            Enter first letter: Y 
 
    OUTPUT: (Screen clears and the following is centered)    
 
                          B                                        
                          B BBBBBBBBBBBBBBB                   
                          B A             B               
                          B A AAAAAAAAAAA B                   
                          B A Z         A B                   
                          B A Z ZZZZZZZ A B                   
                          B A Z Y     Z A B                   
                          B A Z Y YYY Z A B                   
                          B A Z Y   Y Z A B                   
                          B A Z YYYYY Z A B                   
                          B A Z       Z A B                   
                          B A ZZZZZZZZZ A B                   
                          B A           A B                   
                          B AAAAAAAAAAAAA B                   
                          B               B                   
                          BBBBBBBBBBBBBBBBB                   
 
 
 
 
2.9  Write a program to display all possible moves for the Queen on 
an empty chess board.  The program is to first accept as input the 
coordinates of the Queen (column A-H followed by row 1-8), and then 
clears the screen and displays the board layout in the upper left 
corner of the screen.  A Queen may move horizontally, vertically, 
or diagonally.  The letter 'Q' marks the position of the Queen and 
asterisks mark the possible moves for the Queen.  Example: 
 
     INPUT: Enter column and row: C4 
 
    OUTPUT: (Screen clears and the following appears) 
            8     *       * 
            7     *     *   
            6 *   *   *   
            5   * * *   
            4 * * Q * * * * * 
            3   * * *              
            2 *   *   * 
            1     *     * 
              A B C D E F G H 



12  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.10  During a pre-election poll, information was collected 
concerning: sex, age, race, income, and party to vote for.  Each 
set of these categories will continue to be input until an 'E' is 
entered for sex.  Valid inputs for sex are: M for Male, F for 
Female, or E to End;  for race: W for White, or O for Other; and 
for party:  D for Democratic, or R for Republican.  Write a program 
to tabulate the data collected and generate a report showing 
percentages of each category among the Democratic and Republican 
parties as shown below.  The column headings DEMOCRATIC and 
REPUBLICAN begin in columns 33 and 45 respectively.  Percentages 
are displayed in the format ###.#.  Example: 
 
     INPUT: Enter sex: M 
            Enter age: 23 
            Enter race: O 
            Enter income: 19000 
            Enter party: R 
 
            Enter sex: F 
            Enter age: 67 
            Enter race: W 
            Enter income: 34000 
            Enter party: R 
 
            Enter sex: M 
            Enter age: 51 
            Enter race: W 
            Enter income: 56000 
            Enter party: D 
 
            Enter sex: E 
 
    OUTPUT:                                 DEMOCRATIC  REPUBLICAN 
            MALE                                  33.3        33.3 
            FEMALE                                 0.0        33.3 
 
            50 AND BELOW                           0.0        33.3 
            OVER 50                               33.3        33.3 
  
            WHITE                                 33.3        33.3 
            OTHERS                                 0.0        33.3 
 
            ABOVE $25000                          33.3        33.3 
            $25000 AND BELOW                       0.0        33.3 
 
            WHITE MALE OVER 50 AND ABOVE $25000   33.3         0.0 
            OTHER                                  0.0        66.7 
 



 FHSCC '95 PROBLEMS  13  

3.1  As the first quarter of the year approaches, many people are 
working on their tax return.  Write a program to determine how much 
money an individual tax payer will either pay to the IRS or receive 
back from the IRS. 
 
The program is to first accept as input the adjusted gross income 
of a single person and the amount of itemized deductions.  If the 
deductions are greater than the standard deduction of $3,800, then 
subtract the itemized amount from the adjusted gross income; 
otherwise subtract $3,800 from the adjusted gross income.  Subtract 
an additional $2,450 (for one claimed exemption) to produce the 
taxable income. 
 
Each year the IRS produces a tax table corresponding to taxable 
income less than $100,000.  For incomes that exceed $100,000, a tax 
rate schedule is used instead.  Even though the tax rate schedule 
is not used for income less than $100,000, this formula will be 
used in your program for all income levels and will produce amounts 
within $8 of an actual tax table look-up for incomes less than 
$100,000.  Tax is computed as follows: 
 
          15%   of the first $22,750 plus 
          28%   of the amount over  $22,750 up to  $55,100 plus 
          31%   of the amount over  $55,100 up to $115,000 plus 
          36%   of the amount over $115,000 up to $250,000 plus 
          39.6% of the amount over $250,000 
 
The program is also to accept as input the amount of federal income 
tax withheld from the person.  If this amount is less than the 
computed tax, then the difference is owed to the IRS; otherwise the 
IRS owes the difference.  Display the amount owed in the format: 
######.## DOLLARS.  Examples: 
 
     INPUT: Enter adjusted gross income: 32140.65 
            Enter itemized deductions: 4758.00 
            Enter federal income tax withheld: 4062.00 
 
    OUTPUT:     38.36 DOLLARS WILL BE REFUNDED TO YOU 
 
 
     INPUT: Enter adjusted gross income: 306250.00 
            Enter itemized deductions: 3456.00 
            Enter federal income tax withheld: 11222.00 
 
    OUTPUT:  88217.50 DOLLARS YOU OWE 
 



14  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.2  GTE has become the largest U.S.-based local exchange carrier, 
with more than 22 million access lines worldwide.  The GTE phone 
company uses a complex computer application called CBSS to bill its 
valued customers.  In a simplified fashion, GTE charges customers a 
long distance rate determined by the length of a phone call in 
minutes, the time of day the call was placed, and to where the call 
was placed.  Assuming that the rate chart below is in effect, write 
a program to produce a simplified phone bill for a customer given a 
series of phone calls input.  Each phone call consists of the 
length in MINutes, and the time in the form: HH:MM AM  DAY 
where AM could also be PM, and DAY is the first 3 letters of the 
name (i.e. MON, TUE, WED, THU, FRI, SAT, SUN).  The last call 
recorded is indicated by entering a 0 for the next prompt of MIN.  
If the customer's bill is over $20, then give a 20% discount, 
otherwise give a 0% discount.  Display the times without the 
leading zero as shown below, and compute the total charges, the 
discount, and the charges minus the discount.  Assume that the 
phone bill is for BOB SMITH who calls from his home at 813-555-1234 
and always makes calls to the same long distance number.  Note: 
11am is followed by 12pm, then 1pm; 11pm is followed by 12am, then 
1am.  The rates are as follows (the first rate is for the first 
minute, the second rate is for all subsequent minutes): 
 
Weekday Rates (Mon - Fri)    Weekend Rates (11pm Fri - 7:59am Mon) 
 8am -  4:59pm      .28 / .21                 .14 / .11  
 5pm - 10:59pm      .21 / .16     (except 5pm Sun - 10:59pm Sun) 
11pm -  7:59am      .14 / .11                 .21 / .16 
 
Example: 
 
     INPUT: Enter MIN: 1 
            Enter time: 07:56 AM  MON 
            Enter MIN: 25 
            Enter time: 12:01 PM  THU 
            Enter MIN: 35 
            Enter time: 03:15 PM  SAT 
            Enter MIN: 84 
            Enter time: 11:59 AM  FRI 
            Enter MIN: 20 
            Enter time: 10:09 AM  WED 
            Enter MIN: 0 
 
    OUTPUT:  BOB SMITH  (813) 555-1234 
 
              TIME OF DAY  MIN.  CHARGE 
             7:56 AM  MON    1     0.14 
            12:01 PM  THU   25     5.32 
             3:15 PM  SAT   35     3.88 
            11:59 AM  FRI   84    17.71 
            10:09 AM  WED   20     4.27 
 
            TOTAL CHARGES         31.32 
            DISCOUNT               6.26 
            CHARGES - DISCOUNT    25.06 



 FHSCC '95 PROBLEMS  15  

3.3  Write a program to simulate a baseball game of 9 innings.     
The standard baseball rules apply, but the bottom of the 9th inning 
is always played.  Pitchers randomly throw strikes 40% of the time 
and the batters never swing at the ball.  If 4 balls are thrown 
before 3 strikes are thrown, the batter walks to first base.  When 
4 batters from one team walk in one inning, 1 run is earned.  Each 
batter that walks thereafter in the same inning earns a run for the 
team.  3 strikes make 1 out, and after 3 outs the next team bats.  
Because the program is random, executions will differ slightly.  
Examples: 
 
                1  2  3  4  5  6  7  8  9  SCORE 
               --------------------------------- 
       TEAM A ! 0  0  0  3  0  3  0  0  0 !   6  
       TEAM B ! 1  0  0  2  0  0  0  2  0 !   5  
 
       TOTAL # OF STRIKES: 235 
       TOTAL # OF BALLS: 343 
       TOTAL # OF WALKS: 77 
       TOTAL # OF STRIKE OUTS: 54 
 
 
                1  2  3  4  5  6  7  8  9  SCORE 
               --------------------------------- 
       TEAM A ! 0  1  0  0  1  1  0  0  0 !   3  
       TEAM B ! 0  0  2  0  0  2  2  0  3 !   9  
      
       TOTAL # OF STRIKES: 251 
       TOTAL # OF BALLS: 385 
       TOTAL # OF WALKS: 88 
       TOTAL # OF STRIKE OUTS: 54 
 
 
 
3.4  Write a program that will accept up to 8 distinct letters in a 
string and output a list of all possible subsets of the list.  Each 
subset will be listed alphabetically within the subset and in 
ascending order amongst the other subsets.  The output must have as 
many complete subsets on a 50-character line as possible, with one 
space separating each subset.  On the line after the last set of 
subsets, the total number of subsets must be displayed.  Example: 
 
     INPUT: Enter letters: CABFE 
    OUTPUT: {} {A} {AB} {ABC} {ABCE} {ABCEF} {ABCF} {ABE}  
            {ABEF} {ABF} {AC} {ACE} {ACEF} {ACF} {AE} {AEF}  
            {AF} {B} {BC} {BCE} {BCEF} {BCF} {BE} {BEF} {BF}  
            {C} {CE} {CEF} {CF} {E} {EF} {F}  
            TOTAL SUBSETS = 32  
 
 
     INPUT: Enter letters: ZYX 
    OUTPUT: {} {X} {XY} {XYZ} {XZ} {Y} {YZ} {Z} 
            TOTAL SUBSETS = 8 



16  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.5  Write a program for Mr. Gauss to accurately and efficiently 
compute the sum of the integers from 1 to N, where N is input as a 
positive integer having less than 40 digits.  Examples: 
 
     INPUT: Enter number N: 100000000000000000000000000000 
    OUTPUT: 
    5000000000000000000000000000050000000000000000000000000000 
 
 
     INPUT: Enter number N: 999999999999999999999999999999999 
    OUTPUT: 
499999999999999999999999999999999500000000000000000000000000000000 
 
 
 
3.6  Write a program to input several lines of BASIC code and 
display the final values of all the variables used.  All statements 
are executed in the order input and are of the form: 
 
  variable = <variable/constant> [<operator> <variable/constant>] 
 
                - variable is any single letter 
                - constant is any single digit 
                - operator is +, -, *, or /. 
 
The last line of the program will be indicated by 'END'.  All 
variables used on the right side of the equal sign {=} will have 
been previously assigned a value.  All variables are to be 
displayed in the order that they are used in the program and all 
the values displayed will be integers.  Examples: 
 
     INPUT: Enter line: A=5 
            Enter line: B=9 
            Enter line: A=B+7 
            Enter line: B=A-B 
            Enter line: END 
 
    OUTPUT: A=16 
            B=7 
 
 
     INPUT: Enter line: J=2 
            Enter line: E=J*3 
            Enter line: S=E 
            Enter line: U=7*7 
            Enter line: S=J-5 
            Enter line: J=2+E 
            Enter line: E=E/2 
            Enter line: END 
 
    OUTPUT: J=8 
            E=3 
            S=-3 
            U=49 



 FHSCC '95 PROBLEMS  17  

3.7  Write a program to find all sets of three 3-digit primes 
composed of the digits 1 through 9 such that their sum consists of 
four distinct digits in order of magnitude.  Output must be of the 
following format: 
 
     ### + ### + ### = #### 
 
where ### represents the primes displayed in increasing order, and 
#### represents their sum.  The seven sets of primes are to be 
displayed in order of magnitude by the first prime and then the 
second prime (if two sets have the same first prime).  Two of the 
seven solutions are displayed below.  Example: 
 
     149 + 257 + 863 = 1269 
     ### + ### + ### = #### 
     ### + ### + ### = #### 
     241 + 367 + 859 = 1467 
     ### + ### + ### = #### 
     ### + ### + ### = #### 
     ### + ### + ### = #### 
 



18  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.8  Write a program to clear the screen and display a runner's 
digital stop-watch time in block numbers given the minutes and 
seconds as input.  The time must increment by one second 
approximately every second: No more than 15 seconds and no less 
than 7 seconds are to be displayed every 10 actual seconds.  
Program terminates upon pressing any key.  All times are to be 
displayed in the upper-left corner of the screen in block numbers 4 
asterisks wide and 5 asterisks high:  
 
   ****     *  ****  ****  *  *  ****  *     ****  ****  **** 
   *  *     *     *     *  *  *  *     *        *  *  *  *  * 
   *  *     *  ****  ****  ****  ****  ****     *  ****  **** 
   *  *     *  *        *     *     *  *  *     *  *  *     * 
   ****     *  ****  ****     *  ****  ****     *  ****     * 
 
Example: 
 
     INPUT: Enter MM:SS: 09:58 
 
    OUTPUT: (Screen is cleared and the time is displayed in 
             the upper-left corner of screen) 
            ****  ****     ****  **** 
            *  *  *  *  *  *     *  * 
            *  *  ****     ****  **** 
            *  *     *  *     *  *  * 
            ****     *     ****  **** 
 
            (approximately 1 second later the following appears) 
 
            ****  ****     ****  **** 
            *  *  *  *  *  *     *  * 
            *  *  ****     ****  **** 
            *  *     *  *     *     * 
            ****     *     ****     * 
 
            (approximately 1 second later the following appears) 
 
               *  ****     ****  **** 
               *  *  *  *  *  *  *  * 
               *  *  *     *  *  *  * 
               *  *  *  *  *  *  *  * 
               *  ****     ****  **** 
 
            (approximately 1 second later the following appears) 
 
               *  ****     ****     * 
               *  *  *  *  *  *     * 
               *  *  *     *  *     * 
               *  *  *  *  *  *     * 
               *  ****     ****     * 
 
     INPUT: (press any key) 
 
    OUTPUT: (program terminates) 



 FHSCC '95 PROBLEMS  19  

3.9  GTE Data Services was incorporated on Oct. 25, 1967 and has 
recently restructured its four regional Information Processing 
Centers (IPCs) into three Information Control Centers (ICCs) in 
Tampa, Florida;  Sacramento, California; and Fort Wayne, Indiana.  
Each of the buildings located in these areas have many different 
rooms and work cubicles. 
 
Write a program to calculate the area of a room in the shape of a 
polygon with perpendicular corners, given a series of movements 
describing its shape.  After the program accepts the number of 
vertical and horizontal sides in the room, it then accepts a list 
of successive direction-distance pairs, starting from an arbitrary 
corner.  Directions will be U, D, R, and L to indicate Up, Down, 
Right, and Left respectively.  Each direction will be followed by a 
distance in feet, less than 25.  Each room described will have at 
most 10 corners and will have both a length and a width less than 
25 feet.  The first example uses a polygon room with the shape and 
dimensions of: 
                                24             
                    ************************   
                    *                      *   
                  4 *                      *   
                    ********               * 7 
                       8   *               *   
                         3 *               *   
                           *****************   
                                  16           
 
Examples: 
 
     INPUT: Enter number of sides: 6 
            Enter movement: U3 
            Enter movement: L8  
            Enter movement: U4 
            Enter movement: R24 
            Enter movement: D7  
            Enter movement: L16 
 
    OUTPUT: AREA = 144 SQUARE FEET 
 
 
     INPUT: Enter number of sides: 10 
            Enter movement: R8 
            Enter movement: U2 
            Enter movement: R6 
            Enter movement: D10 
            Enter movement: L10 
            Enter movement: U3 
            Enter movement: L9 
            Enter movement: U7 
            Enter movement: R5 
            Enter movement: D2 
  
    OUTPUT: AREA = 147 SQUARE FEET 



20  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.10  Jim is the Distribution Coordinator for GTEDS CBSS Project.  
One aspect of his job is to assign which week of the year to create 
a new version of a library of data sets (files).  The following is 
his base criteria: 
 
     - Each Version of a library spends 12 weeks in a test area and 
       is named R1VvvL01, where vv is the Version number; 
     - Immediately following this test phase, the library is moved 
       to Production for 6 weeks; 
     - 1 week before a library is moved to Production, a new Pre- 
       Production test library is created and is functional for 6 
       weeks; This library is called R1VvvL88; 
     - 6 weeks after a Version enters a test area, the next Version 
       of the library goes to the other test area;  This Version 
       follows the same time frames as listed above and is named 
       similar to the previous Version, except that this Version is 
       one greater in number; 
     - There are 2 test areas, and they alternate Versions of the 
       library; all even Versions are in Test 1; all odd in Test 2. 
 
Write a program to display the time relationships of these library 
versions by a horizontal graph.  Input will consist of (a) a 
version number; (b) the week number that it goes to a test area;  
(c) the first week and the number of weeks to display on the graph 
(each less than 50).  The program is to clear the screen and then 
display each week number vertically, starting in column 10.  The 
versions are to be displayed in the order that they are created, 
each beginning in column 1.  The program must show the time a 
version is in a test area by displaying a 1 or a 2.  Display the 
weeks that a version is in Production with a P.  Display the weeks 
a version has a Pre-Production test area with an asterisk. Example: 
 
     INPUT: Enter version #: 36 
            Enter first week in test: 2 
            Enter first week to display, # of weeks: 4, 34 
    OUTPUT: (Screen clears and the following displays) 
                     0000001111111111222222222233333333 
                     4567890123456789012345678901234567 
  
            R1V34L01 PPPP 
            R1V35L01 2222PPPPPP 
            R1V34L88 *** 
            R1V36L01 1111111111PPPPPP 
            R1V35L88    ****** 
            R1V37L01     222222222222PPPPPP 
            R1V36L88          ****** 
            R1V38L01           111111111111PPPPPP 
            R1V37L88                ****** 
            R1V39L01                 222222222222PPPPPP 
            R1V38L88                      ****** 
            R1V40L01                       111111111111 
            R1V39L88                            ****** 
            R1V41L01                             222222 
            R1V40L88                                  * 
 



 FHSCC '96 PROBLEMS  21  

          FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '96 
 
 
1.1  FHSCC is an abbreviation for Florida High Schools Computing 
Competition.  Write a program to accept as input a four-digit year 
between 1980 and 1996, inclusive, and append the last two digits 
of the year to the phrase: FHSCC '.   Examples: 
 
     INPUT: Enter year: 1996 
    OUTPUT: FHSCC '96 
 
     INPUT: Enter year: 1984 
    OUTPUT: FHSCC '84 
 
 
1.2  Write a program to tally the number of frequent flier miles 
that Doug earns if he flies to and from Caracas, Venezuela X times 
and stays at the Hilton each time and pays a total of Y dollars in 
phone calls.  The distance of the flight is 1300 miles one-way.  
Each "stay" at the Hilton earns 500 miles, and each dollar spent 
on phone calls earns 5 miles. Total will be less than 32767. 
Examples: 
 
     INPUT: Enter X: 3             INPUT: Enter X: 2 
            Enter Y: 10                   Enter Y: 100 
    OUTPUT: 9350                  OUTPUT: 6700 
 
 
1.3  Write a program to print the middle letter or letters of a 
given word.  If the word has an even number of letters, then there 
will be two middle letters.  If the word has an odd number of 
letters, then there will be one middle letter.  Examples: 
 
     INPUT: Enter word: DOUG 
    OUTPUT: OU 
 
     INPUT: Enter word: WOOLLEY 
    OUTPUT: L 
 
 
1.4  Write a program to accept the two end coordinates (X,Y) of 
one of the diagonals of a rectangle in the Cartesian plane whose 
sides are parallel to the X or Y-axis.  The program must then 
display the area and perimeter of the rectangle.  Examples: 
 
     INPUT: Enter coordinate 1: -1, 2 
            Enter coordinate 2: 4, -2 
    OUTPUT: AREA = 20 
            PERIMETER = 18 
 
     INPUT: Enter coordinate 1: 3, 1 
            Enter coordinate 2: 0, 0 
    OUTPUT: AREA = 3 
            PERIMETER = 8 



22  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

1.5  Write a program to code-break a given encrypted secret 
message made up of alphabetic characters and spaces.  The decoder 
must translate the letters ABCDEFGHIJKLMNOPQRSTUVWXYZ into the 
corresponding letters ZYXWVUTSRQPONMLKJIHGFEDCBA, respectively.  A 
space is decoded into a space.  The encryption will not contain 
more than 40 characters.  Example: 
 
     INPUT: Enter encryption: UOLIRWZ SRTS HXSLLO 
    OUTPUT: FLORIDA HIGH SCHOOL 
 
     INPUT: Enter encryption: XLNKFGVI XLMGVHG 
    OUTPUT: COMPUTER CONTEST 
 
 
 
1.6  A nice hotel in Caracas, Venezuela has 26 floors above the 
ground floor.  Write a program to accept as input the floors on 
which an elevator of this hotel stops consecutively, and determine 
the total number of floors that an elevator of this hotel touches 
and the number of unique floors that the elevator touches.  The 
elevator always starts on the ground (floor 0) and ends on the 
ground (floor 0).  Therefore, the elevator starts by touching the 
ground floor and ends touching the ground floor.  In the first 
example below, the elevator touches floors 0,1,2,3,4,5 then floors 
4,3, then floor 4, then floors 3,2,1,0 for a total of 13 floors.  
In the second example below, the elevator touches floors 0,1,2, 
then floors 3,4, then floors 3,2,1,0 for a total of 9 floors.  
Examples: 
 
     INPUT: Enter floor: 5 
            Enter floor: 3 
            Enter floor: 4 
            Enter floor: 0 
 
    OUTPUT: TOTAL FLOORS TOUCHED = 13 
            UNIQUE FLOORS TOUCHED = 6 
 
 
     INPUT: Enter floor: 2 
            Enter floor: 4 
            Enter floor: 0 
 
    OUTPUT: TOTAL FLOORS TOUCHED = 9 
            UNIQUE FLOORS TOUCHED = 5 
 
 
     INPUT: Enter floor: 20 
            Enter floor: 5 
            Enter floor: 24 
            Enter floor: 10 
            Enter floor: 0 
 
    OUTPUT: TOTAL FLOORS TOUCHED = 79 
            UNIQUE FLOORS TOUCHED = 25 



 FHSCC '96 PROBLEMS  23  

1.7  Write a program to determine a person's ratios for buying a 
house and whether he qualifies for a mortgage if a mortgage 
company will not approve a loan with ratios over 33% / 38%.  All 
amounts input are monthly tallies.  To qualify for the loan, the 
first ratio must not exceed 33% and the second ratio must not 
exceed 38%. The first ratio computes the loan amount divided by 
the income.  The second ratio computes the sum of the loan and 
other debts divided by the income.  Display the first and second 
ratios in the format: RATIOS = ##.#% / ##.#%, where each ratio is 
rounded to the nearest tenth of a percent .  Display if this 
person DOES QUALIFY or DOES NOT QUALIFY for the loan.  Examples: 
 
     INPUT: Enter amount of loan: 900  
            Enter amount of debts: 200 
            Enter amount of income: 2800 
 
    OUTPUT: RATIOS = 32.1% / 39.3% 
            DOES NOT QUALIFY 
 
 
     INPUT: Enter amount of loan: 1000 
            Enter amount of debts: 170 
            Enter amount of income: 3100 
 
    OUTPUT: RATIOS = 32.3% / 37.7% 
            DOES QUALIFY 
 
 
 
1.8  Write a program to convert numbers 1-10 to the English or 
Spanish word for the number.  The program will first prompt for 
either the letter 'E' for English or 'S' for Spanish.  Next, the 
program will accept as input a number between 1 and 10, inclusive, 
and display the name of the number in the requested language. 
 
English: ONE TWO THREE FOUR FIVE SIX SEVEN EIGHT NINE TEN 
Spanish: UNO DOS TRES CUATRO CINCO SEIS SIETE OCHO NUEVE DIEZ 
 
     INPUT: Enter E or S: E 
            Enter number: 4 
 
    OUTPUT: FOUR 
 
 
     INPUT: Enter E or S: S 
            Enter number: 10 
 
    OUTPUT: DIEZ 
 
 
     INPUT: Enter E or S: S 
            Enter number: 5 
 
    OUTPUT: CINCO 
 



24  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

1.9  Write a program to form a cross with the word(s) input, given 
that the total number of characters input is an odd number and the 
word(s) are to intersect at the middle character.  Example: 
 
     INPUT: Enter word(s): THE CROSS 
    OUTPUT:     T 
                H 
                E 
 
            THE CROSS 
                R 
                O 
                S 
                S 
 
 
 
1.10  Write a program to simulate the PRICE IS RIGHT game.  Given 
an item's actual price, and unique price guesses from four 
contestants, determine which person comes the closest to the price 
without going over the actual cost.  If every contestant goes over 
the price, then display the message "EVERYONE IS OVER".  Examples: 
 
     INPUT: Enter actual price: 425 
            Enter guesses A, B, C, D: 300, 400, 500, 200 
    OUTPUT: PERSON B 
 
     INPUT: Enter actual price: 399 
            Enter guesses A, B, C, D: 300, 400, 500, 301 
    OUTPUT: PERSON D 
 
     INPUT: Enter actual price: 299 
            Enter guesses A, B, C, D: 300, 400, 500, 301 
    OUTPUT: EVERYONE IS OVER 
 



 FHSCC '96 PROBLEMS  25  

2.1  Write a program that will emulate random dart throws.  The 
dart scores possible are 0,2,4,5,10,20,50 with the probability of 
hitting any score being the same as any other.  The object of the 
game is to accumulate a score of at least 100 points.  The program 
will print the score of each dart throw, separated by a comma, 
until the sum of the scores totals 100 points or more.  The 
program must then print the number of throws that achieved the 
score, followed by the total score achieved.  Sample RANDOM runs: 
 
     OUTPUT: 2,4,20,4,10,0,5,20,4,2,50 
              11 THROWS ACHIEVED SCORE OF 121 
 
     OUTPUT: 50,20,10,5,10,2,5 
              7 THROWS ACHIEVED SCORE OF 102 
 
 
2.2  Write a program to compress information and save space, given 
a string of data.  Input will consist of a string of letters with 
one or more asterisks (representing spaces) between words.  The 
program must display the string of data with multiple asterisks 
replaced by the number of asterisks being eliminated.  If only one 
asterisk separates two words, the asterisk should not be replaced 
with the number 1 since space would not be conserved.  Examples: 
 
     INPUT: Enter string: WE*CONSERVE****SPACE**BY***COMPRESSION 
    OUTPUT: WE*CONSERVE4SPACE2BY3COMPRESSION 
 
     INPUT: Enter string: THIS**SENTENCE*IS*****COMPRESSED 
    OUTPUT: THIS2SENTENCE*IS5COMPRESSED 
 
 
2.3  Set "A" has the property that the product of any two elements 
(numbers in the set) is 1 less than a perfect square.  The numbers 
1, 3, and 8 are elements of this set, i.e. 1x3=(4-1), 1x8=(9-1), 
3x8=(25-1).  Write a program to find two other whole numbers less 
than 1000 that are also elements of set "A".  Display the 
solutions in numerical order in the format shown below, where # 
represents a digit.  Example output format: 
 
    OUTPUT: # 
            ### 
 
 
2.4  Write an efficient program to display the least common 
multiple of a set of integers from 1 to N, inclusive, where N is 
at most 30.  The least common multiple is a positive integer that 
is evenly divisible by every integer in the set and will contain 
at most 13 digits.  Examples: 
 
     INPUT: Enter N: 6             INPUT: Enter N: 30 
    OUTPUT: 60                    OUTPUT: 2329089562800 
 



26  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.5  Write a program to calculate a fractional value of three- 
letter words.  The reciprocal value of a letter in the alphabet 
(A...Z) is defined as the reciprocal of the position of that 
letter in the alphabet (A=1/1, B=1/2, C=1/3 ... Z=1/26).  The 
fractional value is the sum of the reciprocals of the value of 
each letter in that word.  This value must be printed as a 
simplified fraction.  In the first example below, CAB is 1/3 + 1/1 
+ 1/2 = 11/6.  In the second example below, EAT is 1/5 + 1/1 + 
1/20 = (4 + 20 + 1)/20 = 25/20 = 5/4.  Examples: 
  
     INPUT: Enter word: CAB 
    OUTPUT: 11/6 
 
     INPUT: Enter word: EAT 
    OUTPUT: 5/4 
 
 
2.6  The Fibonacci sequence has the property that each number 
(beyond the first two) is the sum of the previous two numbers 
(1,1,2,3,5,8,...).  The first two numbers in the sequence are 1 
and 1.  The third number is the sum of 1 and 1, or 2.  The fourth 
number is the sum of 1 and 2, or 3.  The fifth number is the sum 
of 2 and 3, or 5, etc. 
 
Write a program to accept as input a number, N, less than 10, and 
display the Nth prime within the Fibonacci sequence.  The first 
prime number in the sequence is the number 2.  Examples: 
 
     INPUT: Enter N: 3 
    OUTPUT: 5 
 
     INPUT: Enter N: 9 
    OUTPUT: 514229 
 
 
2.7  GTE sorts its phone bills by postal code then by telephone 
number before the bills are printed.  Write a program to accept as 
input a list of (at most 8) four-digit phone numbers followed by 
zip code, and display the order in which the phone numbers will be 
printed.  Input will be terminated by the entry 0000, 00000.  All 
other entries will not have any leading zeros.  Example: 
 
     INPUT: Enter phone #, zip: 1796, 33647 
            Enter phone #, zip: 1521, 33555 
            Enter phone #, zip: 2001, 33647 
            Enter phone #, zip: 1400, 33647 
            Enter phone #, zip: 1621, 33555 
            Enter phone #, zip: 0000, 00000 
 
    OUTPUT: 1521 
            1621 
            1400 
            1796 
            2001 



 FHSCC '96 PROBLEMS  27  

2.8  Write a program to display the findings of a statistical test 
on a set of random letters.  Given a string of letters, display 
the number of runs of letters that are in the first half of the 
alphabet (A,B,C,D,E,F,G,H,I,J,K,L,M), and the number of runs of 
letters that are in the second half of the alphabet 
(N,O,P,Q,R,S,T, U,V,W,X,Y,Z).  A run is a continuous group of 
elements in the same category.  A string of FLANOMZUGODISGOODF 
consists of the runs: FLA, NO, M, ZU, G, O, DI, S, G, OO, DF.  
Examples: 
 
     INPUT: Enter letters: FLANOMZUGODISGOODF 
    OUTPUT: RUNS IN 1ST HALF = 6 
            RUNS IN 2ND HALF = 5 
 
     INPUT: Enter letters: XPQJESUSISLORDQPY 
    OUTPUT: RUNS IN 1ST HALF = 4 
            RUNS IN 2ND HALF = 5 
 
 
 
2.9  Write a program to reverse the order of letters in each word 
of a given string unless the word is a palindrome (a word that is 
spelled the same forward and backward).  If the word is a 
palindrome, then replace each letter with a question mark (?).  
Each word is separated by a single space.  Examples: 
 
     INPUT: Enter string: HOW GOOD IT IS FOR REMER 
    OUTPUT: WOH DOOG TI SI ROF ????? 
 
     INPUT: Enter string: OTTO CAME UP WITH THE WORD ROADAOR 
    OUTPUT: ???? EMAC PU HTIW EHT DROW ??????? 
 



28  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.10  Write a program to determine the day of the week that a 
given date falls by using the following three tables and 
algorithm: 
 
     MONTH NUMBERS 
     ------------- 
     January   1  (if leap year then use 0) 
     February  4  (if leap year then use 3) 
     March     4 
     April     0         CENTURY NUMBERS          DAY NUMBERS 
     May       2         --------------------     ----------- 
     June      5         1753 to 1799   add 4     Saturday  = 0 
     July      0         1800 to 1899   add 2     Sunday    = 1 
     August    3         1900 to 1999   add 0     Monday    = 2 
     September 6         2000 to 2099   add 6     Tuesday   = 3 
     October   1         2100 to 2199   add 4     Wednesday = 4 
     November  4                                  Thursday  = 5 
     December  6                                  Friday    = 6 
 
Sum the following five derived numbers: 
     1) The last two digits of the year. 
     2) The whole quotient of this number divided by 4. 
     3) The MONTH NUMBER associated with the input month. 
     4) The day of the month for the input date. 
     5) The CENTURY NUMBER associated with the input year. 
 
Next, divide the sum of the five numbers above by 7 and compare 
the remainder with the DAY NUMBERS to obtain the corresponding 
day. 
 
Input will be three numbers corresponding to the month, day, and 
year.  Note that a leap year is divisible by 4, except for those 
years also divisible by 100; but, if the year is also divisible by 
400 then it is still a leap year.  In the first example below, the 
algorithm uses the input date of August 4, 1856, and divides the 
sum of (56 + 14 + 3 + 4 + 2) by 7, which equals 11 remainder 2.  
The number 2 corresponds to Monday, so August 4, 1856 was a 
Monday. Examples: 
 
     INPUT: Enter month, day, year: 8, 4, 1856 
    OUTPUT: MONDAY 
 
     INPUT: Enter month, day, year: 9, 27, 1990 
    OUTPUT: THURSDAY 
 
     INPUT: Enter month, day, year: 2, 1, 1996 
    OUTPUT: THURSDAY 



 FHSCC '96 PROBLEMS  29  

3.1  Write a program to display the appearance of a 3-dimensional 
book with the two title lines centered vertically on the spine.  
The spine's height is to be 2 characters more than the longest 
title line.  The book's width is to be 5 characters.  In the 
process of centering the shorter title line, if there is an extra 
space it should succeed the title line.  Title lines will not 
exceed 17 characters.  The left side of the book must be in column 
1 and the top of the book must be on row 1 of the screen. 
Examples: 
 
     INPUT: Enter title 1: WHERE WE 
            Enter title 2: STAND 
    OUTPUT: (Screen clears, left side in column 1, top in row 1) 
                /---/! 
               /   / ! 
              /   /  ! 
             /   /   ! 
            !---!    ! 
            !  W!    ! 
            !S H!    ! 
            !T E!    ! 
            !A R!    ! 
            !N E!    ! 
            !D  !   / 
            !  W!  / 
            !  E! / 
            !---!/ 
 
 
     INPUT: Enter title 1: EVIDENCE THAT 
            Enter title 2: DEMANDS A VERDICT 
    OUTPUT: (Screen clears, left side in column 1, top in row 1) 
                /---/! 
               /   / ! 
              /   /  ! 
             /   /   ! 
            !---!    ! 
            !D  !    ! 
            !E  !    ! 
            !M E!    ! 
            !A V!    ! 
            !N I!    ! 
            !D D!    ! 
            !S E!    ! 
            !  N!    ! 
            !A C!    ! 
            !  E!    ! 
            !V  !    ! 
            !E T!    ! 
            !R H!    ! 
            !D A!    ! 
            !I T!   / 
            !C  !  / 
            !T  ! / 
            !---!/ 



30  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.2  Write a program to produce a prime factors tree for a given 
number.  As seen in the example below, the symbols {/} and {\} 
appear beneath the largest non-prime factors' left and right, 
respectively.  The smallest prime factors on the bottom-left of 
each {/} are to be displayed in ascending order on each succeeding 
pair of lines.  The larger factor on each line is the dividend of 
the number appearing above it and the prime on its left.  The 
input number will have less than 10 prime factors and none of the 
factors will have more than four digits.  The program must clear 
the screen and display the input number beginning in column 6.  
Examples: 
 
     INPUT: Enter number: 100 
 
    OUTPUT: (Screen is cleared, and the following appears) 
                 100 
                /   \ 
               2     50 
                    /  \ 
                   2    25 
                       /  \ 
                      5    5 
 
 
     INPUT: Enter number: 1716 
 
    OUTPUT: (Screen is cleared, and the following appears) 
                 1716 
                /    \ 
               2      858 
                     /   \ 
                    2     429 
                         /   \ 
                        3     143 
                             /   \ 
                           11     13 
 
 
 
 
3.3  Write a program to simulate a "base four" calculator that 
accepts expressions involving +, -, and unsigned integers in base 
4.  Each integer input will be less than 6 digits long and the 
result must be displayed in base 4.  No expression will contain 
more than 40 characters.  Examples: 
 
     INPUT: Enter base 4 expression: 1230+23-3210-123+10 
    OUTPUT: -2010 
 
     INPUT: Enter base 4 expression: 123-12-12+23-321+333 
    OUTPUT: 200 
 



 FHSCC '96 PROBLEMS  31  

3.4  Write a program to calculate the daily amount of money that a 
contractor makes for working between a given time frame.  Input 
will consist of the hourly rate of pay in dollars for contractors 
who work more than 50 percent of their time during normal working 
hours (7 AM - 5 PM).  If at least 50 percent of the work is done 
outside of normal hours then the pay rate is to be increased by a 
"shift differential" of 10 percent to be applied for all the hours 
worked.  Contractors will work less than 12 hours per day.  The 
start and finish time will be input in the form HH:MM and followed 
by either AM or PM.  Note: 11:59AM is followed by 12:00PM, and 
11:59PM is followed by 12:00AM.  Output must be of the format 
$DDD.CC with no leading zeros in dollars and have trailing zeros 
in cents.  Examples: 
 
     INPUT: Enter pay/hour: 9.05 
            Enter start time: 08:00AM 
            Enter finish time: 07:00PM 
    OUTPUT: $ 99.55 
 
     INPUT: Enter pay/hour: 20.00 
            Enter start time: 12:15PM 
            Enter finish time: 09:45PM 
    OUTPUT: $209.00 
 
 
3.5  On a panel of 16 buttons (4 rows of 4 buttons), each button 
must be pressed once and in the correct order.  The final button 
to be pressed is always marked 0F for Final.  The number of moves 
and the direction is marked on each button.  1R means one move 
right; 2D means two moves down; 3U means three moves up; 1L means 
one move left. 
 
Write a program to print the first button that you must press (and 
its position) that will lead you to press every other button and 
finish at the final button 0F.  In the first example below, 
pressing the 3L button leads to 1D, 3R, 2U, 1U, 2L, 3D, 1R, 3U, 
2L, 1D, 2R, 1L, 1D, 1R, 0F.  Examples: 
 
     INPUT: Enter row: 1D 3D 2L 2L 
            Enter row: 2R 1D 1L 1U 
            Enter row: 1D 1R 0F 3L 
             Enter row: 3R 1R 3U 2U 
 
    OUTPUT: FIRST BUTTON = 3L 
            AT ROW = 3, COL = 4 
 
 
     INPUT: Enter row: 0F 3D 3D 2L 
            Enter row: 2R 1D 1U 2L 
            Enter row: 2U 1L 1R 1U 
             Enter row: 2U 1L 1U 3U 
 
    OUTPUT: FIRST BUTTON = 3U 
            AT ROW = 4, COL = 4 



32  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.6  A magic square is a matrix of distinct numbers with the same 
number of rows as columns, and the sum of the numbers in each row, 
column, and diagonal is equal to the same total (the magic 
number).  There are a number of general methods for generating 
magic squares with an odd "order" (number of rows and columns).  
La Loubre invented the staircase method: 
 
1) Start with a number in the top middle square. 
 
2) The next number (incremented by a constant) is placed 
diagonally up and right in the next box of the array.  If the 
number would be placed outside of the array, then the number is 
moved to another spot in the array according to these two rules: 
If the top row is exceeded, then it is placed in the bottom row; 
if the right-most column is exceeded, then it is placed in the 
first column. 
 
3) If the square is already occupied while trying to place the 
number in the array, then the number is placed in the square that 
is immediately below the original number.  If the bottom row is 
exceeded then the number is placed in the top row with the same 
column. 
 
4) Continue to place numbers in the magic square by repeating 
steps 2 and 3 until all squares have been populated. 
 
Write a program to display a magic square using the staircase 
algorithm, given as input an odd "order" for the magic square (at 
most 13), the first positive integer to use, and the positive 
integral increment between each successive number.  In the magic 
square, each number is to be right justified within a four-
character column.  Begin the output by displaying the magic number 
(the sum of all the cells for a column, for a row, for a 
diagonal).  Examples: 
 
     INPUT: Enter order, first number, increment: 3, 2, 3 
 
    OUTPUT: MAGIC NUMBER = 42 
              23   2  17 
               8  14  20 
              11  26   5 
 
 
     INPUT: Enter order, first number, increment: 7, 90, 2 
 
    OUTPUT: MAGIC NUMBER = 966 
             148 166 184  90 108 126 144 
             164 182 102 106 124 142 146 
             180 100 104 122 140 158 162 
              98 116 120 138 156 160 178 
             114 118 136 154 172 176  96 
             130 134 152 170 174  94 112 
             132 150 168 186  92 110 128 
 



 FHSCC '96 PROBLEMS  33  

3.7  A magic square is a matrix of distinct numbers with the same 
number of rows as columns and the sum of the numbers in each row, 
column, and diagonal is equal to the same total (the magic 
number).  All magic squares with an odd "order" (number of rows 
and columns) can be generated using La Loubre's staircase method. 
General methods are still being explored for generating magic 
squares with an even "order" (number of rows and columns).  Magic 
squares whose order is a multiple of four can be constructed by a 
particular method.  However, the most difficult magic square to 
produce is one with an order of 6.  The easiest method used to 
construct a 6 by 6 magic square is as follows: 
 
1) Divide the 6 by 6 square into four 3 by 3 squares. 
 
2) Using the "staircase" method to generate 3 by 3 magic squares, 
place the first nine numbers in the upper left 3 by 3 square, 
place the next nine numbers in the lower right-hand 3 by 3 square, 
place the next nine numbers in the upper right-hand 3 by 3 square, 
place the last nine numbers in the lower left-hand 3 by 3 square. 
 
3) Transpose the three cells in positions (1,1), (2,2), (3,1) with 
those cells in positions (4,1), (5,2), and (6,1), respectively, 
where each position is designated by (Row, Column). 
 
Write a program to display the 6 by 6 magic square using the 
staircase algorithm, given as input the first positive integer to 
use and the positive increment between each successive number.  
Each number is to be right justified within a four-character 
column.  Begin the output by displaying the magic number (the sum 
of all the cells for a column, for a row, and for a diagonal). 
 
For the example below, a 6 by 6 magic square starting with the 
number 1 and each successive number incremented by 1 would look 
like this after steps 1 and 2: 
 
               8   1   6     26  19  24 
               3   5   7     21  23  25 
               4   9   2     22  27  20 
 
              35  28  33     17  10  15 
              30  32  34     12  14  16 
              31  36  29     13  18  11 
 
The final magic square is displayed below.  Example: 
 
     INPUT: Enter first number, increment: 1, 1 
 
    OUTPUT: MAGIC NUMBER = 111 
              35   1   6  26  19  24 
               3  32   7  21  23  25 
              31   9   2  22  27  20 
               8  28  33  17  10  15 
              30   5  34  12  14  16 
               4  36  29  13  18  11 



34  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.8  Write a program to display a pie graph on the screen using 
asterisks and the letters A, D, and N. 
 
Input will be 3 percentages to divide the circle corresponding to 
3 options on a survey: Agree, Disagree, or Neutral. 
 
Output will be a circle of radius 10 characters.  The circle is 
then partitioned by 3 line segments of asterisks stemming from the 
center.  The first percentage entered (those that Agree) is 
represented by a proportional region of the circle enclosed by two 
segments: One segment is drawn from the center to the top of the 
circle, and another segment is drawn from the center to a point on 
the circle, enclosing a clock-wise region.  Another segment is 
drawn from the center to the circle so that the next area 
clock-wise represents the percentage that disagrees.  The third 
region clock-wise represents the percentage that is neutral.   
After the user presses a key, the 3 regions are filled with either 
A's, D's, or N's, corresponding to its region.  Although your 
output should look very similar to the judging criteria, minor 
variations will be accepted.  After pressing a key to fill the 
regions, all regions must be at least 90% filled.  No letters may 
replace any of the asterisks.  Example: 
 
     INPUT: Enter 3 percentages: 64, 11, 25 
 
    OUTPUT:        *******          OUTPUT:        ******* 
                 **   *   **                     **NNN*AAA** 
                *     *     *                   *NNNNN*AAAAA* 
               *      *      *                 *NNNNNN*AAAAAA* 
              *       *       *               *NNNNNNN*AAAAAAA* 
             *        *        *             *NNNNNNNN*AAAAAAAA* 
             *        *        *             *NNNNNNNN*AAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            ***********         *           ***********AAAAAAAAA* 
            *       **          *           *DDDDDDD**AAAAAAAAAA* 
            *      *            *           *DDDDDD*AAAAAAAAAAAA* 
            *    **             *           *DDDD**AAAAAAAAAAAAA* 
             *  *              *             *DD*AAAAAAAAAAAAAA* 
             *  *              *             *DD*AAAAAAAAAAAAAA* 
              **              *               **AAAAAAAAAAAAAA* 
               **            *                  **AAAAAAAAAAAA* 
                *           *                    *AAAAAAAAAAA* 
                 **       **                      **AAAAAAA** 
                   *******                          ******* 
 
    INPUT: (press any key) 
 



 FHSCC '96 PROBLEMS  35  

3.9  Write a program to produce THE UNIQUE ORDER of execution for 
jobs (that run Billing system programs) given a set of 
dependencies between the jobs.  The program will first prompt for 
the number of dependencies (less than 8) that will be entered.  
Each input line of dependencies will consist of a 2-character job 
name that must finish before the second 2-character job, separated 
by a space.  The output line must contain THE UNIQUE ORDERING of 
the jobs, all on one line, that will satisfy the dependencies.  
Examples: 
 
     INPUT: Enter number of dependencies: 5 
             Enter dependency: OA OU 
            Enter dependency: OA OJ 
            Enter dependency: OA OE 
            Enter dependency: OJ OE 
            Enter dependency: OE OU 
    OUTPUT: JOBS MUST BE RUN IN THIS ORDER: OA OJ OE OU 
 
     INPUT: Enter number of dependencies: 6 
             Enter dependency: BK 5M 
            Enter dependency: BE BK 
            Enter dependency: BM BN 
            Enter dependency: 5M BN 
            Enter dependency: BK BM 
            Enter dependency: BM 5M 
    OUTPUT: JOBS MUST BE RUN IN THIS ORDER: BE BK BM 5M BN 
 
 
3.10  The digits 123456789 can be rearranged to form a nine-digit 
perfect square with unique digits.  For example, swapping 7 with 
8, 6 with 9, 4 with 8, 3 with 7, 2 with 4, and 1 with 8, forms the 
perfect square 847159236 (the square of 29106).  This square is 
formed by making six exchanges: 
 
     swap 7 with 8          123456879 
     swap 6 with 9           123459876    
     swap 4 with 8          123859476 
     swap 3 with 7          127859436    
     swap 2 with 4          147859236 
     swap 1 with 8          847159236 
 
Write a program to find the nine-digit perfect square that 
requires the fewest exchanges of pairs of digits from the original 
123456789 number.  Display the square with its square root 
followed by the number of exchanges required to form the square.  
The format of the output must be two lines as follows in the first 
example with # representing a digit.  The second example output 
shows what the output would be like IF the fewest number of 
exchanges is actually 6, but it is fewer.  Example outputs: 
 
     OUTPUT: ######### IS THE SQUARE OF ##### 
             AND WAS FORMED BY EXCHANGING # PAIRS OF DIGITS 
 
     OUTPUT: 847159236 IS THE SQUARE OF 29106 
             AND WAS FORMED BY EXCHANGING 6 PAIRS OF DIGITS 



36  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

         FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
                        JUDGING CRITERIA 
 
 
1.1  RUN PROGRAM: 
 
    OUTPUT: FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95  
            59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 
            FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
            59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 
            
            59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 

FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 

            FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
            59' NOITITEPMOC GNITUPMOC SLOOHCS HGIH ADIROLF 
 
 
 
1.2  INPUT: Enter comment: COMMENTS ARE GENERATED IN THIS PROGRAM 
 
    OUTPUT: BASIC: ' COMMENTS ARE GENERATED IN THIS PROGRAM 

 }             PASCAL: { COMMENTS ARE GENERATED IN THIS PROGRAM
*/             C: /* COMMENTS ARE GENERATED IN THIS PROGRAM 

            C++: // COMMENTS ARE GENARTED IN THIS PROGRAM 
 
 
 
1.3  INPUT: Enter N: -15             INPUT: Enter N: 99 
            Enter operator: ++              Enter operator: -- 
    OUTPUT: -14                     OUTPUT: 98 
 
 
 
1.4  INPUT: Enter break po 3 3int:      INPUT: Enter break point:  
            Enter number: 6.54321           Enter number: 7.65432 
    OUTPUT: 6.543                   OUTPUT: 7.655 
 
 
     INPUT: Enter break po 9 9int:      INPUT: Enter break point:  
            Enter number: 5.6788            Enter number: 6.78991 
    OUTPUT: 5.678                   OUTPUT: 6.790 
 
 
 
1.5  INPUT: Enter comment: /* COMMAND LIST PROGRAM */ 
    OUTPUT: CLIST 
 
     INPUT: Enter comment: /* REXX */ 
    OUTPUT: REXX 
 
     INPUT: Enter comment: /* THIS IS A 1-POINT-REXX PROGRAM */ 
    OUTPUT: REXX 
 



 FHSCC '95 JUDGING CRITERIA  37  

1.6  INPUT: Enter number of variables: 15  
            Enter number initialized: 9 
            Enter number initialized to 0: 5 
    OUTPUT: BASIC = 4 

4             PASCAL = 2
            C/C++ = 15 
 
     INPUT: Enter number of variables: 10  
            Enter number initialized: 2 
            Enter number initialized to 0: 2 
    OUTPUT: 
            PASCAL = 12 

BASIC = 0 

            C/C++ = 10 
 
 
 
1.7  INPUT: Enter data set name: TTGTCBS.DOCLIB.PROJECT.SPEC 
    OUTPUT: SPEC 
 
     INPUT: Enter data set name: MYUSERID.DATASET 
    OUTPUT: DATASET 
 
 
 
1.8  INPUT: Enter N: 6 
            Enter #: 9.1234 
            Enter #: 10.500 
            Enter #: -3.4 
            Enter #: 7777.22 
            Enter #: 0.0632 
            Enter #: -234.0 
 
    OUTPUT: -234.0 
            0.0632 

22             7777.
            -3.4 

             10.500
            9.1234 
 
 
     INPUT: Enter N: 2 
            Enter #: 100.05 
            Enter #: -3.500 
 
    OUTPUT: -3.500
            100.05 

 

 



38  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

1.9  INPUT: Enter number of X's: 13 
 
    OUTPUT: (Screen clears and the following appears) 
           
             X         X 

 X           X 

              X       X 
               X     X 
                X   X 
                 X X 
                  X 
                 X X 
                X   X 
               X     X 
              X       X 
             X         X 
            X           X 
 
 
 
     INPUT: Enter number of X's: 3 
 
    OUTPUT: (Screen clears and the following appears) 
            
             X 

X X 

            X X 
 
 
 
 
 
1.10 INPUT: Enter # of printed sides: 80 
            Enter # of single sided pages: 9 
    OUTPUT:  93.33 CENTS SAVED 
 
 
     INPUT: Enter # of printed sides: 300 
            Enter # of single sided pages: 20 
    OUTPUT: 350.00 CENTS SAVED 
 



 FHSCC '95 JUDGING CRITERIA  39  

2.1  INPUT: Enter A, B, C: 17, 23, 2 
    OUTPUT: (15,-11) 
 
     INPUT: Enter A, B, C: 2, 3, 96 
    OUTPUT: (3,30) 
 
     INPUT: Enter A, B, C: -100, 99, 8 
    OUTPUT: (91,92) 
 
 
 
2.2  INPUT: Enter part number: 9876543210123456789 
    OUTPUT: ERROR -- CHECK DIGIT SHOULD BE 7 
 
     INPUT: Enter part number: 246801357964 
    OUTPUT: OKAY 
 
 
 
2.3  RUN PROGRAM: 
     OUTPUT: $1 = 0 
             $13 = 1 
             $169 = 2 
             $2197 = 2 
             $28561 = 0 
             $371293 = 9 
             $4826809 = 2 
 
 
 
2.4  INPUT: Enter number of DAC's: 11 
            Enter DAC: 18135551212 
            Enter DAC: 14075551212 
            Enter DAC: 00 
            Enter DAC: 1411 
            Enter DAC: 00 
            Enter DAC: 1411 
            Enter DAC: 19045551212 
            Enter DAC: 1411 
            Enter DAC: 1411 
            Enter DAC: 12125551212 
            Enter DAC: 1411 
    OUTPUT:  8.20 DOLLARS 
 
 
     INPUT: Enter number of DAC's: 2 
            Enter DAC: 12195551212 
            Enter DAC: 1411 
    OUTPUT:  0.65 DOLLARS 



40  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.5  
 INPUT: Enter page number: 320 
OUTPUT: 320  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1985 - 1994 
 
 
 INPUT: Enter page number: 341 
OUTPUT: FHSCC '86 BASIC SOLUTIONS  341 
 
 
 INPUT: Enter page number: 319 
OUTPUT: FHSCC '94 JUDGING CRITERIA  319 
 
 
 INPUT: Enter page number: 701 
OUTPUT: FHSCC '91 PASCAL SOLUTIONS  701 
 
 
 INPUT: Enter page number: 46 
OUTPUT: 46  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1985 - 1994 
 
 
 
2.6  INPUT: Enter form: A 
            Enter form: B 
            Enter form: C 
            Enter form: D 
            Enter form: E 
            Enter form: 1040 
            Enter form: F 
 
    OUTPUT: 36 HR., 49 MIN. 
 
 
     INPUT: Enter form: E 
            Enter form: A 
            Enter form: C 
            Enter form: H 
 
    OUTPUT: 20 HR., 41 MIN. 
 



 FHSCC '95 JUDGING CRITERIA  41  

2.7  INPUT: Enter salary: 40100 
            Enter 401K %: 10 
    OUTPUT: YOU CAN PURCHASE UP TO 401 SHARES 
     INPUT: Enter number of shares: 159 
            Enter end of year price: 34.56 
    OUTPUT: COMPANY CONTRIBUTION:  1804.50 
                     401K RETURN:   814.03 
                      STOCK GAIN:  1170.24 
                      TOTAL GAIN:  3788.77 
 
 
     INPUT: Enter salary: 50999 
            Enter 401K %: 3 
    OUTPUT: YOU CAN PURCHASE UP TO 509 SHARES 
     INPUT: Enter number of shares: 500 
            Enter end of year price: 36.00 
    OUTPUT: COMPANY CONTRIBUTION:  1147.48 
                     401K RETURN:   374.84 
                      STOCK GAIN:  4400.00 
                      TOTAL GAIN:  5922.32 
 
 
 
2.8  INPUT: Enter number of spiral loops: 5 
            Enter first letter: Z 
 
    OUTPUT: (Screen clears and the following is centered)    
 
                        D 
                        D DDDDDDDDDDDDDDDDDDD 
                        D C                 D 
                        D C CCCCCCCCCCCCCCC D 
                        D C B             C D 
                        D C B BBBBBBBBBBB C D 
                        D C B A         B C D 
                        D C B A AAAAAAA B C D 
                        D C B A Z     A B C D 
                        D C B A Z ZZZ A B C D 
                        D C B A Z   Z A B C D 
                        D C B A ZZZZZ A B C D 
                        D C B A       A B C D 
                        D C B AAAAAAAAA B C D 
                        D C B           B C D 
                        D C BBBBBBBBBBBBB C D 
                        D C               C D 
                        D CCCCCCCCCCCCCCCCC D 
                        D                   D 
                        DDDDDDDDDDDDDDDDDDDDD 
 
 
 
 
(INPUT/OUTPUT CONTINUED ON NEXT PAGE) 



42  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

(INPUT/OUTPUT CONTINUED FOR 2.8) 
 
     INPUT: Enter number of spiral loops: 1 
            Enter first letter: F 
 
    OUTPUT: (Screen clears and the following is centered) 
  
                         F  
                         F FFF 
                         F   F 
                         FFFFF 
 
 
 
 
2.9  INPUT: Enter column and row: F2 
 
    OUTPUT: (Screens clears and the following appears) 
            8           *     
            7 *         *     
            6   *       *     
            5     *     *     
            4       *   *   * 
            3         * * *        
            2 * * * * * Q * * 
            1         * * *   
              A B C D E F G H 
 
 
     INPUT: Enter column and row: H8 
 
    OUTPUT: (Screen clears and the following appears) 
            8 * * * * * * * Q 
            7             * * 
            6           *   * 
            5         *     * 
            4       *       * 
            3     *         *      
            2   *           * 
            1 *             * 
              A B C D E F G H 
 



 FHSCC '95 JUDGING CRITERIA  43  

2.10 INPUT: Enter sex: M 
            Enter age: 23 
            Enter race: O 
            Enter income: 19000 
            Enter party: R 
 
            Enter sex: F 
            Enter age: 67 
            Enter race: W 
            Enter income: 34000 
            Enter party: R 
 
            Enter sex: F 
            Enter age: 47 
            Enter race: W 
            Enter income: 24000 
            Enter party: D 
 
            Enter sex: M 
            Enter age: 51 
            Enter race: W 
            Enter income: 56000 
            Enter party: D 
 
            Enter sex: M 
            Enter age: 50 
            Enter race: O 
            Enter income: 36000 
            Enter party: D 
 
            Enter sex: M 
            Enter age: 51 
            Enter race: W 
            Enter income: 16000 
            Enter party: R 
 
            Enter sex: E 
 
    OUTPUT:                                 DEMOCRATIC  REPUBLICAN 
            MALE                                  33.3        33.3 
            FEMALE                                16.7        16.7 
 
            50 AND BELOW                          33.3        16.7 
            OVER 50                               16.7        33.3 
  
            WHITE                                 33.3        33.3 
            OTHERS                                16.7        16.7 
 
            ABOVE $25000                          33.3        16.7 
            $25000 AND BELOW                      16.7        33.3 
 
            WHITE MALE OVER 50 AND ABOVE $25000   16.7         0.0 
            OTHER                                 33.3        50.0 
 



44  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.1  INPUT: Enter adjusted gross income: 45678.90 
            Enter itemized deductions: 3210.98 
            Enter federal income tax withheld: 7000.00 
 
    OUTPUT:   1082.59 DOLLARS YOU OWE 
 
 
     INPUT: Enter adjusted gross income: 1234567.00 
            Enter itemized deductions: 54321.00 
            Enter federal income tax withheld: 555444.00 
 
    OUTPUT: 108397.28 DOLLARS WILL BE REFUNDED TO YOU 
 
 
 
3.2  INPUT: Enter MIN: 29 
            Enter time: 08:50 AM  MON 
            Enter MIN: 1 
            Enter time: 05:50 PM  TUE 
            Enter MIN: 2 
            Enter time: 12:55 PM  WED 
            Enter MIN: 16 
            Enter time: 12:00 AM  THU 
            Enter MIN: 67 
            Enter time: 10:59 PM  FRI 
            Enter MIN: 1 
            Enter time: 12:00 PM  SAT 
            Enter MIN: 30 
            Enter time: 06:00 PM  SUN 
            Enter MIN: 0 
 
    OUTPUT:   BOB SMITH  (813) 555-1234 
 
              TIME OF DAY  MIN.  CHARGE 
             8:50 AM  MON   29     6.16 
             5:50 PM  TUE    1     0.21 
            12:55 PM  WED    2     0.49 
            12:00 AM  THU   16     1.79 
            10:59 PM  FRI   67    10.77 
            12:00 PM  SAT    1     0.14 
             6:00 PM  SUN   30     4.85 
 
            TOTAL CHARGES         24.41 
            DISCOUNT               4.88 
            CHARGES - DISCOUNT    19.53 
 
 
 
 
(INPUT/OUTPUT CONTINUED ON NEXT PAGE) 



 FHSCC '95 JUDGING CRITERIA  45  

(INPUT/OUTPUT CONTINUED FOR 3.2) 
 
     INPUT: Enter MIN: 11 
            Enter time: 08:50 AM  SUN 
            Enter MIN: 0 
 
    OUTPUT:   BOB SMITH  (813) 555-1234 
 
              TIME OF DAY  MIN.  CHARGE 
             8:50 AM  SUN   11     1.24 
 
            TOTAL CHARGES          1.24 
            DISCOUNT               0.00 
            CHARGES - DISCOUNT     1.24 
 
 
 
 
3.3  RUN PROGRAM: (twice) 
 
    OUTPUT: (Each run is random, but should be SIMILAR 
             to the following baseball game results. 
             Check that the score is correctly added. 
             99% of the time this program will have: 
             - each score in an inning less than 10, 
             - total # of strikes between 211 and 280, 
             - total # of balls between 290 and 470, 
             - total # of walks between 69 and 111.) 
 
                     1  2  3  4  5  6  7  8  9  SCORE 
                    --------------------------------- 
            TEAM A ! 2  3  0  0  0  1  0  0  3 !   9  
            TEAM B ! 2  0  1  2  3  0  0  0  2 !  10  
 
            TOTAL # OF STRIKES: 247 
            TOTAL # OF BALLS: 403 
            TOTAL # OF WALKS: 92 
            TOTAL # OF STRIKE OUTS: 54 
 
 
                     1  2  3  4  5  6  7  8  9  SCORE 
                    --------------------------------- 
            TEAM A ! 0  2  0  1  0  2  0  0  1 !   6  
            TEAM B ! 0  0  0  0  0  0  0  1  0 !   1  
           
            TOTAL # OF STRIKES: 239 
            TOTAL # OF BALLS: 337 
            TOTAL # OF WALKS: 76 
            TOTAL # OF STRIKE OUTS: 54 
 



46  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.4  INPUT: Enter letters: EGOAIMY 
 
    OUTPUT: {} {A} {AE} {AEG} {AEGI} {AEGIM} {AEGIMO}  
            {AEGIMOY} {AEGIMY} {AEGIO} {AEGIOY} {AEGIY}  
            {AEGM} {AEGMO} {AEGMOY} {AEGMY} {AEGO} {AEGOY}  
            {AEGY} {AEI} {AEIM} {AEIMO} {AEIMOY} {AEIMY}  
            {AEIO} {AEIOY} {AEIY} {AEM} {AEMO} {AEMOY} {AEMY}  
            {AEO} {AEOY} {AEY} {AG} {AGI} {AGIM} {AGIMO}  
            {AGIMOY} {AGIMY} {AGIO} {AGIOY} {AGIY} {AGM}  
            {AGMO} {AGMOY} {AGMY} {AGO} {AGOY} {AGY} {AI}  
            {AIM} {AIMO} {AIMOY} {AIMY} {AIO} {AIOY} {AIY}  
            {AM} {AMO} {AMOY} {AMY} {AO} {AOY} {AY} {E} {EG}  
            {EGI} {EGIM} {EGIMO} {EGIMOY} {EGIMY} {EGIO}  
            {EGIOY} {EGIY} {EGM} {EGMO} {EGMOY} {EGMY} {EGO}  
            {EGOY} {EGY} {EI} {EIM} {EIMO} {EIMOY} {EIMY}  
            {EIO} {EIOY} {EIY} {EM} {EMO} {EMOY} {EMY} {EO}  
            {EOY} {EY} {G} {GI} {GIM} {GIMO} {GIMOY} {GIMY}  
            {GIO} {GIOY} {GIY} {GM} {GMO} {GMOY} {GMY} {GO}  
            {GOY} {GY} {I} {IM} {IMO} {IMOY} {IMY} {IO} {IOY}  
            {IY} {M} {MO} {MOY} {MY} {O} {OY} {Y}  
            TOTAL SUBSETS = 128 
             
 
     INPUT: Enter letters: LORD 
 
    OUTPUT: {} {D} {DL} {DLO} {DLOR} {DLR} {DO} {DOR} {DR}  
            {L} {LO} {LOR} {LR} {O} {OR} {R}  
            TOTAL SUBSETS = 16 
 
 
 
 
 
3.5  INPUT: Enter N: 1234567890123456789012345678909999 
    OUTPUT: 
762078937661941837524767578139155000992384766155479903221210545000 
 
 
     INPUT: Enter N: 987654321098765432109876543210 
    OUTPUT: 
    987730528992531626293629019968318853833388126809944436823655 
 



 FHSCC '95 JUDGING CRITERIA  47  

3.6  INPUT: Enter line: C=5 
            Enter line: H=9-C 
            Enter line: R=H*C 
            Enter line: I=R/H 
            Enter line: S=I 
            Enter line: T=R+3 
            Enter line: END 
 
    OUTPUT: C=5 
            H=4 
            R=20 
            I=5 
            S=5 
            T=23 
 
 
     INPUT: Enter line: C=2 
            Enter line: B=C*3 
            Enter line: C=C-6 
            Enter line: D=B 
            Enter line: D=C/4 
            Enter line: C=2*B 
            Enter line: B=B+2 
            Enter line: END 
 
    OUTPUT: C=12 
            B=8 
            D=-1 
 
 
 
 
3.7  RUN PROGRAM: 
 
    OUTPUT: 149 + 257 + 863 = 1269 
            149 + 263 + 857 = 1269 
            239 + 587 + 641 = 1467 
            241 + 367 + 859 = 1467 
            257 + 419 + 683 = 1359 
            263 + 419 + 587 = 1269 
            283 + 457 + 619 = 1359 
 



48  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.8  The screen will clear and display a runner's digital stop-
watch time in block numbers given the minutes and seconds as input. 
 The time must increment by one second approximately every second: 
No more than 15 seconds and no less than 7 seconds are to be 
displayed every 10 actual seconds.  Program terminates upon 
pressing any key.  All times are to be displayed in the upper-left 
corner of the screen in block numbers 4 asterisks wide and 5 
asterisks long:  
 
   ****     *  ****  ****  *  *  ****  *     ****  ****  **** 
   *  *     *     *     *  *  *  *     *        *  *  *  *  * 
   *  *     *  ****  ****  ****  ****  ****     *  ****  **** 
   *  *     *  *        *     *     *  *  *     *  *  *     * 
   ****     *  ****  ****     *  ****  ****     *  ****     * 
 
 
 
     INPUT: Enter MM:SS: 03:58 
 
    OUTPUT: (Screen is cleared and the time is displayed in 
             the upper-left corner of screen) 
            ****  ****     ****  **** 
            *  *     *  *  *     *  * 
            *  *  ****     ****  **** 
            *  *     *  *     *  *  * 
            ****  ****     ****  **** 
 
            (approximately 1 second later the following appears) 
 
            ****  ****     ****  **** 
            *  *     *  *  *     *  * 
            *  *  ****     ****  **** 
            *  *     *  *     *     * 
            ****  ****     ****     * 
 
            (approximately 1 second later the following appears) 
 
            ****  *  *     ****  **** 
            *  *  *  *  *  *  *  *  * 
            *  *  ****     *  *  *  * 
            *  *     *  *  *  *  *  * 
            ****     *     ****  **** 
 
            (approximately 1 second later the following appears) 
 
            ****  *  *     ****     * 
            *  *  *  *  *  *  *     * 
            *  *  ****     *  *     * 
            *  *     *  *  *  *     * 
            ****     *     ****     * 
 
            (have the program display 19 more seconds then...) 
     INPUT: (press any key) 
    OUTPUT: (program terminates) 



 FHSCC '95 JUDGING CRITERIA  49  

3.9  INPUT: Enter number of sides: 8 
            Enter movement: L3 
            Enter movement: U10 
            Enter movement: R5 
            Enter movement: U7 
            Enter movement: R3 
            Enter movement: D10 
            Enter movement: L5 
            Enter movement: D7 
 
    OUTPUT: AREA = 66 SQUARE FEET 
 
 
     INPUT: Enter number of sides: 10 
            Enter movement: R5 
            Enter movement: D12 
            Enter movement: L5 
            Enter movement: U2 
            Enter movement: L2 
            Enter movement: D2 
            Enter movement: L6 
            Enter movement: U5 
            Enter movement: R8 
            Enter movement: U7 
  
    OUTPUT: AREA = 96 SQUARE FEET 
 



50  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.10 INPUT: Enter version #: 47 
            Enter first week in test: 8 
            Enter first week to display, # of weeks: 3, 38 
 
    OUTPUT: (Screen clears and the following displays) 
                     00000001111111111222222222233333333334 
                     34567890123456789012345678901234567890 
 
            R1V44L01 PPPPP 
            R1V45L01 22222PPPPPP 
            R1V44L88 **** 
            R1V46L01 11111111111PPPPPP 
            R1V45L88     ****** 
            R1V47L01      222222222222PPPPPP 
            R1V46L88           ****** 
            R1V48L01            111111111111PPPPPP 
            R1V47L88                 ****** 
            R1V49L01                  222222222222PPPPPP 
            R1V48L88                       ****** 
            R1V50L01                        111111111111PPP 
            R1V49L88                             ****** 
            R1V51L01                              222222222 
            R1V50L88                                   **** 
            R1V52L01                                    111 
 
 
 
     INPUT: Enter version #: 36 
            Enter first week in test: 2 
            Enter first week to display, # of weeks: 25, 16 
 
    OUTPUT: (Screen clears and the following displays) 
                     2222233333333334 
                     5678901234567890 
 
            R1V37L01 P 
            R1V38L01 1PPPPPP 
            R1V39L01 2222222PPPPPP 
            R1V38L88 ****** 
            R1V40L01  111111111111PPP 
            R1V39L88       ****** 
            R1V41L01        222222222 
            R1V40L88             **** 
            R1V42L01              111 
 



 FHSCC '96 JUDGING CRITERIA  51  

         FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '96 
                        JUDGING CRITERIA 
 
1.1  INPUT: Enter year: 1992 
    OUTPUT: FHSCC '92 
 
     INPUT: Enter year: 1980 
    OUTPUT: FHSCC '80 
 
 
 
1.2  INPUT: Enter X: 10 
            Enter Y: 100 
    OUTPUT: 31500 
 
     INPUT: Enter X: 5 
            Enter Y: 60 
    OUTPUT: 15800 
 
 
 
1.3  INPUT: Enter word: FLORIDA 
    OUTPUT: R 
 
     INPUT: Enter word: COMPUTER 
    OUTPUT: PU 
 
     INPUT: Enter word: COMPETITION 
    OUTPUT: T 
 
 
 
1.4  INPUT: Enter coordinate 1: 1, -5 
            Enter coordinate 2: -5, -2 
    OUTPUT: AREA = 18 
            PERIMETER = 18 
 
     INPUT: Enter coordinate 1: -3, 1 
            Enter coordinate 2: 0, 12 
    OUTPUT: AREA = 33 
            PERIMETER = 28 
 
 
 
1.5  INPUT: Enter encryption: GSV NBHGVIB GSZG LMXV DZH SRWWVM 
    OUTPUT: THE MYSTERY THAT ONCE WAS HIDDEN 
 
     INPUT: Enter encryption: UILN ZTVH GL TVMVIZGRLMH 
    OUTPUT: FROM AGES TO GENERATIONS 
 



52  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

1.6  INPUT: Enter floor: 5 
            Enter floor: 7 
            Enter floor: 4 
            Enter floor: 18 
            Enter floor: 3 
            Enter floor: 0 
 
    OUTPUT: TOTAL FLOORS TOUCHED = 43 
            UNIQUE FLOORS TOUCHED = 19 
 
 
     INPUT: Enter floor: 26 
            Enter floor: 10 
            Enter floor: 1 
            Enter floor: 0 
 
    OUTPUT: TOTAL FLOORS TOUCHED = 53 
            UNIQUE FLOORS TOUCHED = 27 
 
 
 
1.7  INPUT: Enter amount of loan: 398  
            Enter amount of debts: 500 
            Enter amount of income: 1230 
 
    OUTPUT: RATIOS = 32.4% / 73.0% 
            DOES NOT QUALIFY 
 
 
     INPUT: Enter amount of loan: 1100 
            Enter amount of debts: 150 
            Enter amount of income: 3300 
 
    OUTPUT: RATIOS = 33.3% / 37.9% 
            DOES NOT QUALIFY 
 
 
     INPUT: Enter amount of loan: 800 
            Enter amount of debts: 200 
            Enter amount of income: 3000 
 
    OUTPUT: RATIOS = 26.7% / 33.3% 
            DOES QUALIFY 
 



 FHSCC '96 JUDGING CRITERIA  53  

1.8  INPUT: Enter E or S: E 
             Enter number: 7 
    OUTPUT: SEVEN 
 
     INPUT: Enter E or S: S 
            Enter number: 8 
    OUTPUT: OCHO 
 
     INPUT: Enter E or S: S 
            Enter number: 1 
    OUTPUT: UNO 
 
     INPUT: Enter E or S: E 
             Enter number: 3 
    OUTPUT: THREE 
 
 
 
1.9  INPUT: Enter word(s): HIGH SCHOOL 
    OUTPUT:      H 
                 I 
                 G 
                 H 
 
            HIGH SCHOOL 
                 C 
                 H 
                 O 
                 O 
                 L 
 
 
     INPUT: Enter word(s): DOG 
    OUTPUT:  D 
            DOG 
             G 
 
 
 
1.10 INPUT: Enter actual price: 600 
            Enter guesses A, B, C, D: 300, 400, 500, 200 
    OUTPUT: PERSON C 
 
     INPUT: Enter actual price: 399 
            Enter guesses A, B, C, D: 600, 500, 400, 300 
    OUTPUT: PERSON D 
 
     INPUT: Enter actual price: 300 
            Enter guesses A, B, C, D: 301, 402, 503, 604 
    OUTPUT: EVERYONE IS OVER 
 
     INPUT: Enter actual price: 425 
            Enter guesses A, B, C, D: 425, 500, 400, 300 
    OUTPUT: PERSON A 



54  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.1  RUN PROGRAM: 
 
(The program will emulate random dart throws.  The dart scores 
possible are 0,2,4,5,10,20,50 with the probability of hitting any 
score being the same as any other.  The object of the game is to 
accumulate a score of at least 100 points.  The program will print 
the score of each dart throw, separated by a comma, until the sum 
of the scores totals 100 points or more.  The program must then 
print the number of throws that achieved the score, followed by the 
total score achieved.) 
 
- Ensure that all dart scores are only 0,2,4,5,10,20, or 50 
- Ensure that the # of throws equals the # of scores shown above it 
- Ensure that the final score is at least 100, and that the 
  difference between the score and the last dart throw score is 
  less than 100 
- Ensure that the program "appears" random by running it several 
  times 
 
  Sample RANDOM runs: 
 
     OUTPUT: 2,4,20,4,10,0,5,20,4,2,50 
              11 THROWS ACHIEVED SCORE OF 121 
 
     OUTPUT: 50,20,10,5,10,2,5 
              7 THROWS ACHIEVED SCORE OF 102 
 
 
2.2  INPUT: Enter string: FLORIDA*HIGH**SCHOOLS***COMPUTING 
    OUTPUT: FLORIDA*HIGH2SCHOOLS3COMPUTING 
 
     INPUT: Enter string: COMPETITION*******FOR*****THIS*YEAR 
    OUTPUT: COMPETITION7FOR5THIS*YEAR 
 
 
 
2.3  RUN PROGRAM: 
    OUTPUT: 0 
            120 
 
 
 
2.4  INPUT: Enter N: 10            INPUT: Enter N: 28 
    OUTPUT: 2520                  OUTPUT: 80313433200 
 
 
 
2.5  INPUT: Enter word: FUN 
    OUTPUT: 2/7 
 
     INPUT: Enter word: BAT 
    OUTPUT: 31/20 
 



 FHSCC '96 JUDGING CRITERIA  55  

2.6  INPUT: Enter N: 7 
    OUTPUT: 1597 
 
     INPUT: Enter N: 8 
    OUTPUT: 28657 
 
 
2.7  INPUT: Enter phone #, zip: 1796, 33647 
            Enter phone #, zip: 1521, 33555 
            Enter phone #, zip: 2001, 33647 
            Enter phone #, zip: 1400, 33647 
            Enter phone #, zip: 1621, 33555 
            Enter phone #, zip: 1555, 33647 
            Enter phone #, zip: 0000, 00000 
 
    OUTPUT: 1521 
            1621 
            1400 
            1555 
            1796 
            2001 
 
 
     INPUT: Enter phone #, zip: 3000, 33444 
            Enter phone #, zip: 2000, 33555 
            Enter phone #, zip: 2001, 33222 
            Enter phone #, zip: 1000, 33444 
            Enter phone #, zip: 4000, 33555 
            Enter phone #, zip: 0000, 00000 
 
    OUTPUT: 2001 
            1000 
            3000 
            2000 
            4000 
 
 
 
2.8  INPUT: Enter letters: YETRULYTHEBIBLEISGODSWORD 
    OUTPUT: RUNS IN 1ST HALF = 6 
            RUNS IN 2ND HALF = 6 
 
     INPUT: Enter letters: LORDJESUSISGODSSON 
    OUTPUT: RUNS IN 1ST HALF = 5 
            RUNS IN 2ND HALF = 5 
 
 
 
2.9  INPUT: Enter string: WHAT DOES SIMIS MEAN 
    OUTPUT: TAHW SEOD ????? NAEM 
 
     INPUT: Enter string: OTTO GAVE A TOOT TO TOTO 
    OUTPUT: ???? EVAG ? ???? OT OTOT 
 



56  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

2.10 INPUT: Enter month, day, year: 2, 29, 1992 
    OUTPUT: SATURDAY 
 
     INPUT: Enter month, day, year: 10, 16, 1966 
    OUTPUT: SUNDAY 
 
     INPUT: Enter month, day, year: 2, 1, 1799 
    OUTPUT: FRIDAY 
 
     INPUT: Enter month, day, year: 1, 1, 2100 
    OUTPUT: FRIDAY 
 



 FHSCC '96 JUDGING CRITERIA  57  

3.1  INPUT: Enter title 1: THE HAPPIEST 
            Enter title 2: PEOPLE ON EARTH 
 
    OUTPUT: (Screen clears, left side in column 1, top in row 1) 
                /---/! 
               /   / ! 
              /   /  ! 
             /   /   ! 
            !---!    ! 
            !P  !    ! 
            !E T!    ! 
            !O H!    ! 
            !P E!    ! 
            !L  !    ! 
            !E H!    ! 
            !  A!    ! 
            !O P!    ! 
            !N P!    ! 
            !  I!    ! 
            !E E!    ! 
            !A S!    ! 
            !R T!   / 
            !T  !  / 
            !H  ! / 
            !---!/ 
 
 
     INPUT: Enter title 1: MORE THAN A 
            Enter title 2: CARPENTER 
 
    OUTPUT: (Screen clears, left side in column 1, top in row 1) 
                /---/! 
               /   / ! 
              /   /  ! 
             /   /   ! 
            !---!    ! 
            !  M!    ! 
            !C O!    ! 
            !A R!    ! 
            !R E!    ! 
            !P  !    ! 
            !E T!    ! 
            !N H!    ! 
            !T A!    ! 
            !E N!   / 
            !R  !  / 
            !  A! / 
            !---!/ 
 



58  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.2  INPUT: Enter number: 1130 
 
    OUTPUT: (Screen is cleared, and the following appears) 
                 1130 
                /    \ 
               2      565 
                     /   \ 
                    5     113 
 
 
     INPUT: Enter number: 4864 
 
    OUTPUT: (Screen is cleared, and the following appears) 
                 4864 
                /    \ 
               2      2432 
                     /    \ 
                    2      1216 
                          /    \ 
                         2      608 
                               /   \ 
                              2     304 
                                   /   \ 
                                  2     152 
                                       /   \ 
                                      2     76 
                                           /  \ 
                                          2    38 
                                              /  \ 
                                             2    19 
 
 
 
3.3  INPUT: Enter base 4 expression: 1230-23+3210+123-10 
    OUTPUT: 11130 
 
     INPUT: Enter base 4 expression: 12321-32101-21012+12321 
    OUTPUT: -21211 
 
 
3.4  INPUT: Enter pay/hour: 15.00 
            Enter start time: 01:30AM 
            Enter finish time: 12:10PM 
    OUTPUT: $176.00 
 
     INPUT: Enter pay/hour: 20.00 
            Enter start time: 12:55PM 
            Enter finish time: 12:25AM 
    OUTPUT: $253.00 
 
     INPUT: Enter pay/hour: 30.00 
            Enter start time: 06:00AM 
            Enter finish time: 05:25PM 
    OUTPUT: $342.50 



 FHSCC '96 JUDGING CRITERIA  59  

3.5  INPUT: Enter row: 1D 3D 2L 2L 
            Enter row: 2R 1D 1L 1U 
            Enter row: 1D 1R 1R 0F 
             Enter row: 3R 1R 3U 2U 
    OUTPUT: FIRST BUTTON = 1D 
            AT ROW = 3, COL = 1 
 
 
     INPUT: Enter row: 2R 2R 2D 0F 
            Enter row: 1U 1U 1L 3L 
            Enter row: 1R 1D 1R 3L 
             Enter row: 3R 1R 2U 2U 
    OUTPUT: FIRST BUTTON = 3R 
            AT ROW = 4, COL = 1 
 
 
3.6  INPUT: Enter order, first number, increment: 5, 9, 10 
    OUTPUT: MAGIC NUMBER = 645 
             169 239   9  79 149 
             229  49  69 139 159 
              39  59 129 199 219 
              99 119 189 209  29 
             109 179 249  19  89 
 
 
     INPUT: Enter order, first number, increment: 7, 89, 2 
    OUTPUT: MAGIC NUMBER = 959 
             147 165 183  89 107 125 143 
             163 181 101 105 123 141 145 
             179  99 103 121 139 157 161 
              97 115 119 137 155 159 177 
             113 117 135 153 171 175  95 
             129 133 151 169 173  93 111 
             131 149 167 185  91 109 127 
 
 
 
3.7  INPUT: Enter first number, increment: 2, 1 
    OUTPUT: MAGIC NUMBER = 117 
              36   2   7  27  20  25 
               4  33   8  22  24  26 
              32  10   3  23  28  21 
               9  29  34  18  11  16 
              31   6  35  13  15  17 
               5  37  30  14  19  12 
 
     INPUT: Enter first number, increment: 10, 25 
    OUTPUT: MAGIC NUMBER = 2685 
             860  10 135 635 460 585 
              60 785 160 510 560 610 
             760 210  35 535 660 485 
             185 685 810 410 235 360 
             735 110 835 285 335 385 
              85 885 710 310 435 260 



60  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

3.8  INPUT: Enter 3 percentages: 64, 11, 25 
    OUTPUT:        *******          OUTPUT:        ******* 
                 **   *   **                     **NNN*AAA** 
                *     *     *                   *NNNNN*AAAAA* 
               *      *      *                 *NNNNNN*AAAAAA* 
              *       *       *               *NNNNNNN*AAAAAAA* 
             *        *        *             *NNNNNNNN*AAAAAAAA* 
             *        *        *             *NNNNNNNN*AAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            ***********         *           ***********AAAAAAAAA* 
            *       **          *           *DDDDDDD**AAAAAAAAAA* 
            *      *            *           *DDDDDD*AAAAAAAAAAAA* 
            *    **             *           *DDDD**AAAAAAAAAAAAA* 
             *  *              *             *DD*AAAAAAAAAAAAAA* 
             *  *              *             *DD*AAAAAAAAAAAAAA* 
              **              *               **AAAAAAAAAAAAAA* 
               **            *                  **AAAAAAAAAAAA* 
                *           *                    *AAAAAAAAAAA* 
                 **       **                      **AAAAAAA** 
                   *******                          ******* 
 
    INPUT: (press any key) 
 
Note: Although the output should look very similar to the judging 
criteria, minor variations will be accepted.  After pressing a key 
to fill the regions, all regions must be at least 90% filled.  No 
letters may replace any of the asterisks. 
 
     INPUT: Enter 3 percentages: 25, 39, 36 
    OUTPUT:        *******          OUTPUT:        ******* 
                 **   *   **                     **NNN*AAA** 
                *     *     *                   *NNNNN*AAAAA* 
               *      *      *                 *NNNNNN*AAAAAA* 
              *       *       *               *NNNNNNN*AAAAAAA* 
             *        *        *             *NNNNNNNN*AAAAAAAA* 
             *        *        *             *NNNNNNNN*AAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            *         *         *           *NNNNNNNNN*AAAAAAAAA* 
            *         ***********           *NNNNNNNNN*********** 
            *       **          *           *NNNNNNN**DDDDDDDDDD* 
            *      *            *           *NNNNNN*DDDDDDDDDDDD* 
            *    **             *           *NNNN**DDDDDDDDDDDDD* 
             *  *              *             *NN*DDDDDDDDDDDDDD* 
             *  *              *             *NN*DDDDDDDDDDDDDD* 
              **              *               **DDDDDDDDDDDDDD* 
               **            *                  **DDDDDDDDDDDD* 
                *           *                    *DDDDDDDDDDD* 
                 **       **                      **DDDDDDD** 
                   *******                          ******* 
 
     INPUT: (press any key) 



 FHSCC '96 JUDGING CRITERIA  61  

3.9  INPUT: Enter number of dependencies: 5 
            Enter dependency: PF PI 
            Enter dependency: PA PF 
            Enter dependency: PF PP 
            Enter dependency: PI PP 
            Enter dependency: PA PI 
    OUTPUT: JOBS MUST BE RUN IN THIS ORDER: PA PF PI PP 
 
 
     INPUT: Enter number of dependencies: 8 
             Enter dependency: VS VD 
            Enter dependency: V8 VI 
            Enter dependency: VD VI 
            Enter dependency: VA V7 
            Enter dependency: V8 VS 
            Enter dependency: V7 V8 
            Enter dependency: VA VS 
            Enter dependency: V7 VD 
    OUTPUT: JOBS MUST BE RUN IN THIS ORDER: VA V7 V8 VS VD VI 
 
 
 
3.10  RUN PROGRAM:  
 
    OUTPUT: 523814769 IS THE SQUARE OF 22887 
            AND WAS FORMED BY EXCHANGING 3 PAIRS OF DIGITS 
 



62  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

        FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 
                     BASIC PROGRAM SOLUTIONS 
 
 
'1.1 
' This program displays title of contest forward and backward. 
' 
A$ = "FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95" 
FOR I = 1 TO 4 
    PRINT A$ 
    FOR J = LEN(A$) TO 1 STEP -1 
      PRINT MID$(A$, J, 1); 
    NEXT J 
    PRINT 
NEXT I 
 
 
'1.2 
' This program will generate comments in different languages. 
' 
INPUT "Enter comment:"; C$ 
PRINT "BASIC: ' "; C$ 
PRINT "PASCAL: { "; C$; " }" 
PRINT "C: /* "; C$; " */" 
PRINT "C++: // "; C$ 
 
 
'1.3 
' This program either increments or decrements N by 1. 
' 
INPUT "Enter N:"; N 
INPUT "Enter operator:"; OP$ 
IF OP$ = "++" THEN 
  PRINT N + 1 
ELSE          'OPerator is "--" 
  PRINT N - 1 
END IF 
 
 
'1.4 
' This program rounds to three decimal places by break point 
' 
INPUT "Enter break point:"; BP 
INPUT "Enter number:"; NUM 
ROUND = INT(NUM * 1000 + (10 - BP) / 10) / 1000 
PRINT USING "#.###"; ROUND 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  63  

'1.5 
' This program will determine if a program is a REXX or a CLIST. 
' 
INPUT "Enter comment:"; C$ 
IF INSTR(C$, "REXX") > 0 THEN 
  PRINT "REXX" 
ELSE 
  PRINT "CLIST" 
END IF 
 
 
'1.6 
' This program displays the number of times variables appear. 
' 
INPUT "Enter number of variables:"; NUM 
INPUT "Enter number initialized:"; INIT 
INPUT "Enter number initialized to 0:"; INIT0 
PRINT "BASIC ="; INIT - INIT0 
PRINT "PASCAL ="; NUM + INIT 
PRINT "C/C++ ="; NUM 
 
 
'1.7 
' This program displays the last qualifier of a data set name. 
' 
INPUT "Enter data set name"; DSN$ 
FOR I = LEN(DSN$) TO 1 STEP -1 
  CH$ = MID$(DSN$, I, 1) 
  IF CH$ = "." THEN 
    PRINT LAST$: END 
  ELSE 
    LAST$ = CH$ + LAST$ 
  END IF 
NEXT I 
 
 
'1.8 
' This program displays a set of real numbers in reverse order. 
' 
INPUT "Enter N:"; N 
FOR I = 1 TO N 
  INPUT "Enter #:"; A$(I) 
NEXT I 
PRINT 
FOR I = N TO 1 STEP -1 
  PRINT A$(I) 
NEXT I 
 



64  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'1.9 
' This program displays a large X made up of letter X's. 
' 
INPUT "Enter number of X's:"; NUM 
CLS 
FOR I = 1 TO NUM 
  LOCATE I, I: PRINT "X" 
  LOCATE I, NUM - I + 1: PRINT "X" 
NEXT I 
 
 
 
'1.10 
' This program will display the savings in postage. 
' 
COST = 23.33333 
INPUT "Enter # of printed sides:"; PS 
INPUT "Enter # of single sided pages:"; SS 
' Calculate # of pages and weight for 1st bill 
PAGE1 = PS - 6: OZ1 = 1 
OZ1 = OZ1 + INT((PAGE1 + 8) / 9) 
' Calculate # of pages and weight for 2nd bill 
PAGE2 = SS + INT((PS - SS + 1) / 2) - 6 
OZ2 = 1 
OZ2 = OZ2 + INT((PAGE2 + 8) / 9) 
PRINT USING "###.## CENTS SAVED"; (OZ1 - OZ2) * COST 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  65  

'2.1 
' This program finds integral solutions of (X,Y) for AX + BY = C. 
' 
INPUT "Enter A, B, C:"; A, B, C 
X = 1 
DO 
  Y = (C - A * X) / B 
  IF ABS(Y - INT(Y)) < .001 THEN 
    PRINT "("; LTRIM$(STR$(X)); ","; LTRIM$(STR$(Y)); ")" 
    END 
  END IF 
  X = X + 1 
LOOP UNTIL X > 10000 
 
 
'2.2 
' This program verifies a part number by validating check digit 
' 
INPUT "Enter part number:"; PART$ 
L = LEN(PART$): PROD = 1 
FOR I = 1 TO L - 1 
  DIGIT = VAL(MID$(PART$, I, 1)) 
  SUM = SUM + DIGIT * ((I MOD 2) + 1) 
NEXT I 
' Subtract units digit of sum from 9 for check digit 
CHKDIGIT = 9 - (SUM MOD 10) 
IF CHKDIGIT = VAL(RIGHT$(PART$, 1)) THEN 
  PRINT "OKAY" 
ELSE 
  PRINT "ERROR - CHECK DIGIT SHOULD BE"; CHKDIGIT 
END IF 
 
 
'2.3 
' This program determines number of prizes given of $13 million 
' 
PRIZE = 13000000 
' Same algorithm is used as converting # to base 13 # 
FOR I = 6 TO 0 STEP -1 
  POW(I) = INT(13 ^ I + .1) 
  A(I) = INT(PRIZE / POW(I)) 
  PRIZE = PRIZE MOD POW(I) 
NEXT I 
FOR I = 0 TO 6 
  PRINT "$"; LTRIM$(STR$(POW(I))); " ="; A(I) 
NEXT I 
 



66  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'2.4 
' This program will determine the cost of Directory Assistance. 
' 
INPUT "Enter number of DACs:"; N 
FOR I = 1 TO N 
  INPUT "Enter DAC:"; DAC$ 
  IF DAC$ = "00" THEN 
    COST = 3! 
  ELSEIF DAC$ = "1411" THEN 
    LOCALDAC = LOCALDAC + 1: COST = 0 
  ELSE 
    AREA$ = MID$(DAC$, 2, 3) 
    IF AREA$ = "813" THEN 
      COST = .25 
    ELSEIF AREA$ = "305" OR AREA$ = "407" OR AREA$ = "904" THEN 
      COST = .4 
    ELSE 
      COST = .65 
    END IF 
  END IF 
  TOT = TOT + COST 
NEXT I 
' Every local DAC after the third cost 25 cents 
IF LOCALDAC > 3 THEN 
  TOT = TOT + (LOCALDAC - 3) * .25 
END IF 
PRINT USING "##.## DOLLARS"; TOT 
 
 
'2.5 
' This program will display the heading of even/odd pages. 
' 
DATA PROBLEMS,180,JUDGING CRITERIA,140 
DATA BASIC SOLUTIONS,200,PASCAL SOLUTIONS,260 
FOR I = 1 TO 4: READ P$(I), PNUM(I): NEXT I 
' 
INPUT "Enter page number:"; PAGE 
IF PAGE MOD 2 = 0 THEN 
  PRINT LTRIM$(STR$(PAGE)); 
  PRINT "  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION"; 
  PRINT " 1985 - 1994" 
ELSE 
  PRINT "FHSCC '"; 
  I = 1: PAG = PAGE 
  WHILE PAG > PNUM(I) 
    PAG = PAG - PNUM(I): I = I + 1 
  WEND 
  CH = INT(PAG / (PNUM(I) / 10)) 
  PRINT USING "## "; 85 + CH; 
  PRINT P$(I); " "; 
  PRINT PAGE 
END IF 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  67  

'2.6 
' This program will compute the total ESTIMATED PREPARATION TIME. 
' 
DATA 1040,A,B,C,D,E 
DATA 3,8,  2,53, 4,41, 0,53 
DATA 2,32, 0,26, 1,10, 0,27 
DATA 0,33, 0,8,  0,17, 0,20 
DATA 6,26, 1,10, 2,5,  0,35 
DATA 0,51, 0,42, 1,1,  0,41 
DATA 2,52, 1,7, 1,16,  0,35 
FOR I = 1 TO 6: READ FORM$(I): NEXT I 
FOR I = 1 TO 6 
  FOR J = 1 TO 4 
    READ HR(I, J), MIN(I, J) 
  NEXT J 
NEXT I 
' Tally form times until invalid entry 
I = 0 
DO UNTIL I > 6 
  INPUT "Enter form:"; F$ 
  I = 1 
  WHILE (I < 7) AND (F$ <> FORM$(I)): I = I + 1: WEND 
  IF I < 7 THEN 
    FOR J = 1 TO 4 
      TOTHR = TOTHR + HR(I, J) 
      TOTMIN = TOTMIN + MIN(I, J) 
    NEXT J 
  END IF 
LOOP 
' 
TOTHR = TOTHR + INT(TOTMIN / 60) 
TOTMIN = TOTMIN MOD 60 
PRINT TOTHR; "HR.,"; TOTMIN; "MIN." 
 



68  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'2.7 
' This program will calculate investments at GTE. 
' 
BEGPRICE = 32! * .85 
RETURN401K = .14 
' 
INPUT "Enter salary:"; SALARY 
INPUT "Enter 401K %:"; PERCENT: PERCENT = PERCENT / 100 
MAXSHARES = INT(SALARY / 100) 
PRINT "YOU CAN PURCHASE UP TO"; MAXSHARES; "SHARES" 
INPUT "Enter number of shares:"; SHARES 
INPUT "Enter end of year price:"; ENDPRICE 
' 
EMPCONT = SALARY * PERCENT 
IF PERCENT >= .06 THEN 
  COMPCONT = (SALARY * .06) * .75 
ELSE 
  COMPCONT = (SALARY * PERCENT) * .75 
END IF 
K401 = (EMPCONT + COMPCONT) * RETURN401K 
STOCKGAIN = SHARES * (ENDPRICE - BEGPRICE) 
TOTALGAIN = COMPCONT + K401 + STOCKGAIN 
' 
PRINT USING "COMPANY CONTRIBUTION: #####.##"; COMPCONT 
PRINT USING "401K INTEREST RETURN: #####.##"; K401 
PRINT USING "         STOCK GAINS: #####.##"; STOCKGAIN 
PRINT USING "         TOTAL GAINS: #####.##"; TOTALGAIN 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  69  

'2.8 
' This program will produce loops of a spiral using letters. 
' 
INPUT "Enter number of spiral loops:"; NUM 
INPUT "Enter first letter:"; LET$ 
CLS 
ROW = 12: COL = 40: INCR = 1 
WHILE LOOPNUM < NUM 
  INCR = INCR + 2 
  ' Go right 
  LOCATE ROW, COL: PRINT STRING$(INCR, LET$) 
  COL = COL + INCR - 1 
  ' Go down 
  FOR I = 1 TO INCR - 1 
    LOCATE ROW + I, COL: PRINT LET$ 
  NEXT I 
  ROW = ROW + INCR - 1: INCR = INCR + 2 
  ' Go left 
  COL = COL - INCR + 1 
  LOCATE ROW, COL: PRINT STRING$(INCR, LET$) 
  ' Go up 
  FOR I = 1 TO INCR - 2 
    LOCATE ROW - I, COL: PRINT LET$ 
  NEXT I 
  ROW = ROW - INCR + 1 
  IF LET$ = "Z" THEN LET$ = "A" ELSE LET$ = CHR$(ASC(LET$) + 1) 
  LOOPNUM = LOOPNUM + 1 
WEND 
 



70  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'2.9 
' This program shows all possible moves for a Queen in chess. 
' 
INPUT "Enter column and row:"; RC$ 
COL = ASC(LEFT$(RC$, 1)) - ASC("A") + 1 
ROW = 9 - VAL(RIGHT$(RC$, 1)) 
CLS 
FOR I = 8 TO 1 STEP -1: PRINT USING "#"; I: NEXT I 
PRINT "  A B C D E F G H" 
' Horizontal moves 
LOCATE ROW, 3: PRINT "* * * * * * * *" 
' Vertical moves 
FOR I = 1 TO 8: LOCATE I, COL * 2 + 1: PRINT "*": NEXT I 
' Diagonal moves 
FOR I = 1 TO 7 
  R(1) = ROW - I: C(1) = COL - I 
  R(2) = ROW + I: C(2) = COL + I 
  R(3) = ROW - I: C(3) = COL + I 
  R(4) = ROW + I: C(4) = COL - I 
  FOR J = 1 TO 4 
    IF R(J) > 0 AND R(J) < 9 AND C(J) > 0 AND C(J) < 9 THEN 
       LOCATE R(J), C(J) * 2 + 1: PRINT "*" 
    END IF 
  NEXT J 
NEXT I 
LOCATE ROW, COL * 2 + 1: PRINT "Q" 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  71  

'2.10 
' This program tabulates information during a pre-election. 
' 
DATA MALE,FEMALE,50 AND BELOW,OVER 50,WHITE,OTHERS 
DATA ABOVE $25000,$25000 AND BELOW 
DATA WHITE MALE OVER 50 AND ABOVE $25000,OTHER 
INPUT "Enter sex:"; SEX$ 
WHILE SEX$ <> "E" 
  INPUT "Enter age:"; AGE 
  INPUT "Enter race:"; RACE$ 
  INPUT "Enter income:"; INCOME 
  INPUT "Enter party:"; PARTY$ 
  IF PARTY$ = "D" THEN COL = 1 ELSE COL = 2 
  IF SEX$ = "M" THEN ROW = 1 ELSE ROW = 2 
  SUM(ROW, COL) = SUM(ROW, COL) + 1 
  IF AGE <= 50 THEN ROW = 3 ELSE ROW = 4 
  SUM(ROW, COL) = SUM(ROW, COL) + 1 
  IF RACE$ = "W" THEN ROW = 5 ELSE ROW = 6 
  SUM(ROW, COL) = SUM(ROW, COL) + 1 
  IF INCOME > 25000 THEN ROW = 7 ELSE ROW = 8 
  SUM(ROW, COL) = SUM(ROW, COL) + 1 
  IF RACE$ = "W" AND SEX$ = "M" AND AGE > 50 AND ROW = 7 THEN 
    ROW = 9 
  ELSE 
    ROW = 10 
  END IF 
  SUM(ROW, COL) = SUM(ROW, COL) + 1 
  TOTAL = TOTAL + 1: PRINT 
  INPUT "Enter sex:"; SEX$ 
WEND 
' 
PRINT TAB(33); "DEMOCRATIC  REPUBLICAN"; 
FOR ROW = 1 TO 10 
  IF ROW MOD 2 = 1 THEN PRINT 
  READ A$(ROW): PRINT A$(ROW); 
  PRINT TAB(38); 
  PRINT USING "###.#"; SUM(ROW, 1) / TOTAL * 100; 
  PRINT USING "       ###.#"; SUM(ROW, 2) / TOTAL * 100 
NEXT ROW 
 



72  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.1 
' This program will determine how much IRS owes/pays. 
' 
DATA 22750, 55100, 115000, 250000, 9999999 
FOR I = 1 TO 5: READ AMOUNT(I): NEXT I 
DATA .15, .28, .31, .36, .396 
FOR I = 1 TO 5: READ RATE(I): NEXT I 
STDEDUCT = 3800: EXEMPTION = 2450 
' 
INPUT "Enter adjusted gross income:"; GROSS 
INPUT "Enter itemized deductions:"; DEDUCTIONS 
INPUT "Enter federal income tax withheld"; FEDTAX 
IF DEDUCTIONS > STDEDUCT THEN 
  INCOME = GROSS - DEDUCTIONS 
ELSE 
  INCOME = GROSS - STDEDUCT 
END IF 
TAXINC = INCOME - EXEMPTION 
' 
FOR I = 1 TO 5 
  IF TAXINC <= AMOUNT(I) THEN 
    FOR J = 1 TO I - 1 
      TAX = TAX + (AMOUNT(J) - AMOUNT(J - 1)) * RATE(J) 
    NEXT J 
    TAX = TAX + (TAXINC - AMOUNT(I - 1)) * RATE(I) 
    PRINT USING "######.## DOLLARS "; ABS(TAX - FEDTAX); 
    IF FEDTAX < TAX THEN 
      PRINT "YOU OWE" 
    ELSE 
      PRINT "WILL BE REFUNDED TO YOU" 
    END IF: END 
  END IF 
NEXT I 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  73  

'3.2 
' This program will display a simplified phone bill. 
' 
L = 1: INPUT "Enter MIN:"; MIN(L) 
WHILE MIN(L) > 0 
  INPUT "Enter time:"; TIM$(L) 
  L = L + 1 
  INPUT "Enter MIN:"; MIN(L) 
WEND 
L = L - 1 
' 
' Display bill 
PRINT "  BOB SMITH  (813) 555-1234": PRINT 
PRINT "  TIME OF DAY  MIN.  CHARGE" 
FOR I = 1 TO L 
  IF LEFT$(TIM$(I), 1) = "0" THEN 
    PRINT " "; MID$(TIM$(I), 2); 
  ELSE 
    PRINT TIM$(I); 
  END IF 
  ' Calculate charge 
  HH = VAL(LEFT$(TIM$(I), 2)) 
  AM$ = MID$(TIM$(I), 7, 2) 
  DAY$ = RIGHT$(TIM$(I), 3) 
  BOOL1 = (HH > 7 AND HH < 12 AND AM$ = "AM") 
  BOOL2 = (HH = 12 AND AM$ = "PM") OR (HH < 5 AND AM$ = "PM") 
  MIDDAY = BOOL1 OR BOOL2 
  IF HH > 4 AND HH < 11 AND AM$ = "PM" AND DAY$ <> "SAT" THEN 
    RATE1 = .21: RATE2 = .16 
  ELSEIF MIDDAY AND DAY$ <> "SAT" AND DAY$ <> "SUN" THEN 
    RATE1 = .28: RATE2 = .21 
  ELSE 
    RATE1 = .14: RATE2 = .11 
  END IF 
  CHARGE(I) = RATE1 + RATE2 * (MIN(I) - 1) 
  PRINT USING "  ###"; MIN(I); 
  PRINT USING "   ###.##"; CHARGE(I) 
  TOT = TOT + CHARGE(I) 
NEXT I 
IF TOT > 20 THEN DISC = TOT * .2 
PRINT 
PRINT "TOTAL CHARGES"; TAB(22); 
PRINT USING "###.##"; TOT 
PRINT "DISCOUNT"; TAB(22); 
PRINT USING "###.##"; DISC 
PRINT "CHARGES - DISCOUNT"; TAB(22); 
PRINT USING "###.##"; TOT - DISC 
 



74  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.3 
' This program simulates a baseball game. 
' 
DEFINT A-W 
RANDOMIZE TIMER 
CLS : PRINT 
PRINT SPACE$(8); 
FOR I = 1 TO 9: PRINT I; : NEXT I: PRINT " SCORE" 
PRINT SPACE$(8); : FOR I = 1 TO 33: PRINT "-"; : NEXT I: PRINT 
PRINT "TEAM A !"; SPACE$(27); "!" 
PRINT "TEAM B !"; SPACE$(27); "!" 
FOR IN = 1 TO 9 
  FOR T = 1 TO 2 
    S = 0: B = 0: W = 0: R = 0: O = 0 
    WHILE O < 3 
      X = RND(3) 
      IF X < .4 THEN S = S + 1: STOT = STOT + 1 
      IF X >= .4 THEN B = B + 1: BTOT = BTOT + 1 
      IF S = 3 THEN O = O + 1: OTOT = OTOT + 1: S = 0: W = 0 
      IF B = 4 THEN W = W + 1: WTOT = WTOT + 1: B = 0: S = 0 
      IF W = 4 THEN R = R + 1: R(T) = R(T) + 1: W = 3 
    WEND 
    LOCATE 3 + T, 6 + IN * 3: PRINT R; 
  NEXT T 
NEXT IN 
LOCATE 4, 39: PRINT USING "##"; R(1) 
LOCATE 5, 39: PRINT USING "##"; R(2) 
PRINT 
PRINT "TOTAL # OF STRIKES:"; STOT 
PRINT "TOTAL # OF BALLS:"; BTOT 
PRINT "TOTAL # OF WALKS:"; WTOT 
PRINT "TOTAL # OF STRIKE OUTS:"; OTOT 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  75  

'3.4 
' This program will produce all possible subsets of letters. 
' 
DEFINT A-Z: DIM SUB$(1024) 
INPUT "Enter letters:"; L$ 
L = LEN(L$) 
FOR I = 1 TO L: A$(I) = MID$(L$, I, 1): NEXT I 
' 
' Sort letters in A$() 
FOR I = 1 TO L - 1 
  FOR J = I + 1 TO L 
    IF A$(I) > A$(J) THEN SWAP A$(I), A$(J) 
  NEXT J 
NEXT I 
' 
' Generate binary numbers to produce all subsets. 
FOR N = 0 TO 2 ^ L - 1 
  NUM = N 
  FOR J = L - 1 TO 0 STEP -1 
    BIT = INT(NUM / 2 ^ J) 
    IF BIT THEN 
      SUB$(N) = SUB$(N) + A$(L - J): NUM = NUM - 2 ^ J 
    END IF 
  NEXT J 
NEXT N 
' 
' Bubble Sort subsets 
FOR I = 0 TO 2 ^ L - 2 
  FOR J = I + 1 TO 2 ^ L - 1 
    IF SUB$(I) > SUB$(J) THEN SWAP SUB$(I), SUB$(J) 
  NEXT J 
NEXT I 
' 
' Display subsets 
FOR I = 0 TO 2 ^ L - 1 
  SUBLEN = LEN(SUB$(I)) + 3 
  IF COL + SUBLEN > 50 THEN PRINT : COL = 0 
  PRINT "{"; SUB$(I); "} "; 
  COL = COL + SUBLEN 
NEXT I 
PRINT : PRINT "TOTAL SUBSETS ="; 2 ^ L 
 



76  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.5 
' This program will sum big integers from 1 to N. 
' Gauss's formula: SUM = N * (N+1) / 2. 
' 
DIM A(80), B(80), PROD(80), D(80) 
INPUT "Enter N:"; N$ 
' 
' Store digits of N$ in A() and B() 
LENA = LEN(N$): LENB = LENA 
FOR I = 1 TO LENA 
  A(I) = VAL(MID$(N$, LENA - I + 1, 1)) 
  B(I) = A(I) 
NEXT I 
' 
' Add 1 to number in B() 
B(1) = B(1) + 1: I = 1 
WHILE B(I) = 10 
  B(I) = 0: I = I + 1: B(I) = B(I) + 1 
WEND 
IF I > LENB THEN LENB = I 
' 
' Multiply A() by B() 
FOR I = 1 TO LENA 
  CARRY = 0 
  FOR J = 1 TO LENB 
    S = I + J - 1 
    PROD(S) = PROD(S) + A(I) * B(J) + CARRY 
    CARRY = INT(PROD(S) / 10) 
    PROD(S) = PROD(S) - CARRY * 10 
  NEXT J 
  IF CARRY > 0 THEN PROD(S + 1) = CARRY 
NEXT I 
IF CARRY > 0 THEN S = S + 1 
' 
' Divide product PROD() by 2 
IF PROD(S) = 1 THEN S = S - 1: CARRY = 10 
FOR I = S TO 1 STEP -1 
  D(I) = INT((PROD(I) + CARRY) / 2) 
  CARRY = (PROD(I) MOD 2) * 10 
NEXT I 
' 
' Display answer in D() 
FOR I = S TO 1 STEP -1 
  PRINT USING "#"; D(I); 
NEXT I: PRINT 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  77  

'3.6 
' This program will assign values to variables in BASIC code. 
' 
DO 
  L = L + 1 
  INPUT "Enter line:"; A$(L) 
LOOP UNTIL A$(L) = "END" 
L = L - 1 
' 
FOR I = 1 TO L 
  ' Determine if first variable is new or old 
  V$ = LEFT$(A$(I), 1) 
  POSV = INSTR(ALLV$, V$) 
  IF POSV = 0 THEN 
    ALLV$ = ALLV$ + V$ 
    POSV = LEN(ALLV$) 
  END IF 
  ' 
  ' Assign value for first number 
  CH$ = MID$(A$(I), 3, 1) 
  IF CH$ >= "0" AND CH$ <= "9" THEN 
    NUM1 = VAL(CH$) 
  ELSE 
    POSV2 = INSTR(ALLV$, CH$) 
    NUM1 = B(POSV2) 
  END IF 
  ' 
  IF LEN(A$(I)) = 3 THEN 
    ' Assign first number to current variable 
    B(POSV) = NUM1 
  ELSE 
    ' Assign value for second number 
    CH$ = RIGHT$(A$(I), 1) 
    IF CH$ >= "0" AND CH$ <= "9" THEN 
      NUM2 = VAL(CH$) 
    ELSE 
      POSV3 = INSTR(ALLV$, CH$) 
      NUM2 = B(POSV3) 
    END IF 
    ' Perform operation with 1st and 2nd num and place in var 
    OP$ = MID$(A$(I), 4, 1) 
    SELECT CASE OP$ 
      CASE "+": B(POSV) = NUM1 + NUM2 
      CASE "-": B(POSV) = NUM1 - NUM2 
      CASE "*": B(POSV) = NUM1 * NUM2 
      CASE "/": B(POSV) = NUM1 / NUM2 
    END SELECT 
  END IF 
NEXT I 
' Display the variables in order of appearance with values 
FOR I = 1 TO LEN(ALLV$) 
  PRINT MID$(ALLV$, I, 1); "="; 
  PRINT LTRIM$(STR$(B(I))) 
NEXT I 



78  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.7 
' This program finds three 3-digit primes having digits 1-9. 
' 
' Generate primes into A() 
DEFINT B-Z: DEFLNG A: DIM A(200) 
FOR I = 101 TO 997 STEP 2 
  J = 3: PRIME = -1 
  WHILE (J <= SQR(I)) AND PRIME 
    IF I MOD J = 0 THEN PRIME = 0 
    J = J + 2 
  WEND 
  IF PRIME THEN  'Ensure that Digits are unique and not 0 
    H = INT(I / 100) 
    T = INT((I - H * 100) / 10) 
    ONE = I - H * 100 - T * 10 
    IF T > 0 AND H <> T AND T <> ONE AND H <> ONE THEN 
      P = P + 1: A(P) = I 
    END IF 
  END IF 
NEXT I 
' Add the different combinations of 3 primes 
FOR I = 1 TO P - 2 
  FOR J = I + 1 TO P - 1 
    FOR K = J + 1 TO P 
      SUM = A(I) + A(J) + A(K) 
      ' Check if SUM has 4 digits in ascending order 
      IF SUM >= 1234 THEN 
        DIGITS$ = LTRIM$(STR$(SUM)): GOOD = -1: L = 1 
        DO 
          IF MID$(DIGITS$, L, 1) >= MID$(DIGITS$, L + 1, 1) THEN 
            GOOD = 0 
          END IF 
          L = L + 1 
        LOOP UNTIL (L = 4) OR NOT GOOD 
        ' Check all 3-digit primes for digits 1 through 9 
        IF GOOD THEN 
          ADIGITS = (A(I) * 1000 + A(J)) * 1000 + A(K) 
          DIGITS$ = LTRIM$(STR$((ADIGITS))): L = 1 
          WHILE (L <= 9) AND GOOD 
            IF INSTR(DIGITS$, CHR$(48 + L)) = 0 THEN GOOD = 0 
            L = L + 1 
          WEND 
          IF GOOD THEN 
            PRINT A(I); "+"; A(J); "+"; A(K); "="; SUM 
            PNUM = PNUM + 1: IF PNUM = 7 THEN END 
          END IF 
        END IF 
      END IF 
    NEXT K 
  NEXT J 
NEXT I 
 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  79  

'3.8 
' This program will display time MM:SS in block letters. 
' 
DATA ****     *  ****  ****  *  *  ****  *     ****  ****  **** 
DATA *  *     *     *     *  *  *  *     *        *  *  *  *  * 
DATA *  *     *  ****  ****  ****  ****  ****     *  ****  **** 
DATA *  *     *  *        *     *     *  *  *     *  *  *     * 
DATA ****     *  ****  ****     *  ****  ****     *  ****     * 
DATA 6,10,6,10, 1,7,18,24 
FOR I = 1 TO 5 
  READ B$ 
  FOR J = 0 TO 9: A$(I, J) = MID$(B$, J * 6 + 1, 4): NEXT J 
NEXT I 
FOR I = 1 TO 4: READ MAX(I): NEXT I  'Maximum units for MM:SS 
FOR I = 1 TO 4: READ COL(I): NEXT I  'Columns to start blocks 
' 
INPUT "Enter MM:SS:"; MMSS$ 
FOR I = 1 TO 4 
  DIG(I) = VAL(MID$(MMSS$, I - (I > 2), 1)) 
NEXT I 
' 
CLS 
LOCATE 2, 14: PRINT "*": LOCATE 4, 14: PRINT "*" 
DO UNTIL CH$ <> "" 
  FOR I = 1 TO 4 
    FOR J = 1 TO 5 
      LOCATE J, COL(I): PRINT A$(J, DIG(I)) 
    NEXT J 
  NEXT I 
  DIG(4) = DIG(4) + 1 
  FOR J = 4 TO 1 STEP -1 
    IF DIG(J) = MAX(J) THEN 
      DIG(J - 1) = DIG(J - 1) + 1: DIG(J) = 0 
    END IF 
  NEXT J 
  FOR I = 1 TO 3000: NEXT I  'Approximately 1 second 
  CH$ = INKEY$ 
LOOP 
 



80  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.9 
' This program will calculate the area of a polygon room. 
' 
INPUT "Enter number of sides:"; SIDES 
FOR I = 1 TO SIDES 
  INPUT "Enter movement:"; MOV$ 
  DIR$(I) = MID$(MOV$, 1, 1) 
  L = LEN(MOV$) 
  MOV$ = MID$(MOV$, 2, L - 1) 
  DIST(I) = VAL(MOV$) 
' Subtract Down and Left directions 
  IF DIR$(I) = "D" OR DIR$(I) = "L" THEN DIST(I) = -DIST(I) 
NEXT I 
' Multiply length by width to obtain rectangle area, 
' then add or subtract area from overall area. 
I = 1: SUM = 0: AREA = 0 
WHILE (I <= SIDES) 
  SUM = SUM + DIST(I) 
  AREA = AREA + (SUM * DIST(I + 1)) 
  I = I + 2 
WEND 
PRINT "AREA ="; ABS(AREA); "SQUARE FEET" 
 
 
 
'3.10 
' This program displays versions of libraries on a graph. 
' 
INPUT "Enter version #:"; Vers 
INPUT "Enter first week in test:"; FirstWk 
INPUT "Enter first week to display, # of weeks:"; FWKDisp, WkNum 
CLS 
LWKDisp = FWKDisp + WkNum - 1 
' Display week #s at top (units first, then tens) 
PRINT SPACE$(9); 
FOR I = FWKDisp TO LWKDisp 
  PRINT USING "#"; INT(I / 10); 
NEXT I 
PRINT : PRINT SPACE$(9); 
FOR I = FWKDisp TO LWKDisp 
  PRINT USING "#"; I MOD 10; 
NEXT I 
PRINT : PRINT 
LastWk = FirstWk + 17 
' Compute # of versions to backup from Vers input 
Backup = INT((LastWk - FWKDisp) / 6) 
Vers = Vers - Backup 
FirstWk = FirstWk - 6 * Backup: LastWk = LastWk - 6 * Backup 
DO UNTIL FirstWk > LWKDisp 
  ' Display Version and indent 
  PRINT "R1V"; RIGHT$(STR$(100 + Vers), 2); "L01 "; 
  IF FWKDisp <= FirstWk THEN 
    Min = FirstWk 
    PRINT SPACE$(FirstWk - FWKDisp); 
  ELSE 



 FHSCC '95 BASIC PROGRAM SOLUTIONS  81  

    Min = FWKDisp 
  END IF 
  IF LWKDisp >= LastWk THEN Max = LastWk ELSE Max = LWKDisp 
  ' Display TestArea of 1 if Vers even, 2 if odd; P = Production 
  TestArea = (Vers MOD 2) + 1 
  FOR I = Min TO Max 
    IF I < FirstWk + 12 THEN 
      PRINT USING "#"; TestArea; 
    ELSE 
      PRINT "P"; 
    END IF 
  NEXT I 
  PRINT 
  ' Display Pre-Production Version 
  FirstPreWk = FirstWk + 5: LastPreWk = FirstWk + 10 
  IF (LastPreWk >= FWKDisp) AND (FirstPreWk <= LWKDisp) THEN 
    PRINT "R1V"; RIGHT$(STR$(100 + Vers - 1), 2); "L88 "; 
    IF FirstPreWk > FWKDisp THEN 
      Min = FirstPreWk 
      PRINT SPACE$(FirstPreWk - FWKDisp); 
    ELSE 
      Min = FWKDisp 
    END IF 
    IF LWKDisp >= LastPreWk THEN 
      Max = LastPreWk 
    ELSE 
      Max = LWKDisp 
    END IF 
    PRINT STRING$(Max - Min + 1, "*") 
  END IF 
  FirstWk = FirstWk + 6: LastWk = LastWk + 6 
  Vers = Vers + 1 
LOOP 
 



82  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

         FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '96 
                     BASIC PROGRAM SOLUTIONS 
 
 
'1.1 
' This program displays a phrase of the form FHSCC '##. 
' 
INPUT "Enter year:"; YEAR$ 
PRINT "FHSCC '"; MID$(YEAR$, 3, 2) 
 
 
'1.2 
' This program tallies number of frequent flier miles. 
' 
INPUT "Enter X:"; X 
INPUT "Enter Y:"; Y 
PRINT X * (1300 + 1300 + 500) + (Y * 5) 
 
 
'1.3 
' This program displays middle letter(s) of a word. 
' 
INPUT "Enter word:"; WORD$ 
L = LEN(WORD$): M = INT(L / 2) 
IF L MOD 2 = 0 THEN PRINT MID$(WORD$, M, 1); 
PRINT MID$(WORD$, M + 1, 1) 
 
 
'1.4 
' This program displays area and perimeter of a rectangle 
' 
INPUT "Enter coordinate 1:"; X1, Y1 
INPUT "Enter coordinate 2:"; X2, Y2 
AREA = ABS((X1 - X2) * (Y1 - Y2)) 
PERIM = (ABS(X1 - X2) + ABS(Y1 - Y2)) * 2 
PRINT "AREA ="; AREA 
PRINT "PERIMETER ="; PERIM 
 
 
'1.5 
' This program code-breaks an encrypted secret message. 
' 
INPUT "Enter encryption:"; E$ 
FOR I = 1 TO LEN(E$) 
  M$ = MID$(E$, I, 1) 
  IF M$ = " " THEN 
    PRINT M$; 
  ELSE 
    PRINT CHR$(ASC("Z") - ASC(M$) + ASC("A")); 
  END IF 
NEXT I 
PRINT 
 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  83  

'1.6 
' This program display number of floors touched by elevator 
' 
DO 
  INPUT "Enter floor:"; FLOOR 
  TOTAL = TOTAL + ABS(FLOOR - LASTFLOOR) 
  IF FLOOR > MAX THEN MAX = FLOOR 
  LASTFLOOR = FLOOR 
LOOP UNTIL (FLOOR = 0) 
' 1 is added for the starting ground floor 
PRINT "TOTAL FLOORS TOUCHED ="; TOTAL + 1 
PRINT "UNIQUE FLOORS TOUCHED ="; MAX + 1 
 
 
'1.7 
' This program displays a person's ratios for buying a house. 
' 
INPUT "Enter amount of loan:"; LOAN 
INPUT "Enter amount of debts:"; DEBTS 
INPUT "Enter amount of income:"; INCOME 
RATIO1 = (LOAN / INCOME) * 100 
RATIO2 = ((LOAN + DEBTS) / INCOME) * 100 
PRINT USING "RATIOS = ##.#% / ##.#%"; RATIO1; RATIO2 
PRINT "DOES "; 
IF RATIO1 > 33 OR RATIO2 > 38 THEN PRINT "NOT "; 
PRINT "QUALIFY" 
 
 
'1.8 
' This program will convert numbers to English or Spanish. 
' 
DATA ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN 
DATA UNO,DOS,TRES,CUATRO,CINCO,SEIS,SIETE,OCHO,NUEVE,DIEZ 
INPUT "Enter E or S:"; LANG$ 
INPUT "Enter number:"; NUM 
IF LANG$ = "S" THEN FOR I = 1 TO 10: READ N$: NEXT I 
FOR I = 1 TO NUM 
  READ N$ 
NEXT I 
PRINT N$ 
 
 
'1.9 
' This program forms a cross from word(s). 
' 
INPUT "Enter word(s):"; W$ 
L = LEN(W$): M = INT(L / 2) + 1 
FOR I = 1 TO L 
  IF I <> M THEN 
    PRINT SPACE$(M - 1); MID$(W$, I, 1) 
  ELSE 
    PRINT W$ 
  END IF 
NEXT I 



84  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'1.10 
' This program simulates the PRICE IS RIGHT game. 
' 
INPUT "Enter actual price:"; PRICE 
INPUT "Enter guesses A, B, C, D"; A(1), A(2), A(3), A(4) 
MIN = 32000 
FOR I = 1 TO 4 
  IF A(I) <= PRICE THEN 
    DIF = PRICE - A(I) 
    IF DIF < MIN THEN MIN = DIF: INDEX = I 
  END IF 
NEXT I 
IF INDEX > 0 THEN 
  PRINT "PERSON "; MID$("ABCD", INDEX, 1) 
ELSE 
  PRINT "EVERYONE IS OVER" 
END IF 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  85  

'2.1 
' This program will emulate random dart throws. 
' 
DATA 0,2,4,5,10,20,50 
FOR I = 1 TO 7: READ S$(I): NEXT I: PRINT " "; 
RANDOMIZE TIMER 
DO 
  X = INT(RND(3) * 7) + 1: THROW = THROW + 1 
  PRINT S$(X); 
  TOTAL = TOTAL + VAL(S$(X)) 
  IF TOTAL < 100 THEN PRINT ","; 
LOOP UNTIL TOTAL >= 100 
PRINT : PRINT THROW; "THROWS ACHIEVED SCORE OF"; TOTAL: PRINT 
 
 
'2.2 
' This program compresses information to save space. 
' 
INPUT "Enter string:"; S$ 
FOR I = 1 TO LEN(S$) 
  MD$ = MID$(S$, I, 1) 
  IF MD$ <> "*" THEN 
    IF AST > 0 THEN 
      IF AST = 1 THEN PRINT "*";  ELSE PRINT USING "#"; AST; 
      AST = 0 
    END IF 
    PRINT MD$; 
  ELSE 
    AST = AST + 1 
  END IF 
NEXT I 
PRINT 
 
 
'2.3 
' This program finds 2 numbers to add to the set 1,3,8. 
' 
A(1) = 1: A(2) = 3: A(3) = 8: N = 3: I = 0 
FOR I = 0 TO 999 
  FOUND = -1 
  FOR J = 1 TO N 
    NUM = A(J) * I + 1 
    IF SQR(NUM) - INT(SQR(NUM + .0001)) > .0001 THEN FOUND = 0 
  NEXT J 
  IF FOUND THEN 
    PRINT I: N = N + 1: A(N) = I: IF N = 5 THEN END 
  END IF 
NEXT I 
 



86  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'2.4 
' This program diplays the LCM of the first N integers. 
' 
DIM A(31): DEFDBL P 
INPUT "Enter N:"; N 
FOR I = 2 TO N: A(I) = I: NEXT I 
' Produce all the necessary prime factors 
FOR I = 2 TO N 
  FOR J = I + 1 TO N 
    IF A(J) MOD A(I) = 0 THEN A(J) = A(J) / A(I) 
  NEXT J 
NEXT I 
' 
PROD = 1 
FOR I = 2 TO N: PROD = PROD * A(I): NEXT I 
PRINT PROD 
 
 
'2.5 
' This program will calculate the fractional value. 
' 
INPUT "Enter word: "; A$ 
FOR I = 1 TO 3 
  A(I) = ASC(MID$(A$, I, 1)) - 64 
NEXT I 
N = A(1) * A(2) + A(2) * A(3) + A(1) * A(3) 
D = A(1) * A(2) * A(3) 
FOR I = D TO 1 STEP -1 
  IF N MOD I = 0 AND D MOD I = 0 THEN 
    PRINT LTRIM$(STR$(N / I)); "/"; LTRIM$(STR$(D / I)): END 
  END IF 
NEXT I 
 
 
'2.6 
' This program displays the Nth prime in Fibonacci sequence. 
' 
DIM F(99) 
F(1) = 1: F(2) = 1: F(3) = 2: PNUM = 1: I = 3 
INPUT "Enter N:"; N 
WHILE PNUM < N 
  I = I + 1 
  F(I) = F(I - 1) + F(I - 2): PRIME = -1 
  ' Check if Fibonacci # is prime (not divisible by 2 or odd #) 
  IF F(I) MOD 2 = 0 THEN PRIME = 0 
  IF PRIME THEN 
    FOR J = 3 TO SQR(F(I)) 
      IF F(I) MOD J = 0 THEN PRIME = 0 
    NEXT J 
    IF PRIME THEN PNUM = PNUM + 1 
  END IF 
WEND 
PRINT F(I) 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  87  

'2.7 
' This program sorts phone bills by zip code and phone #. 
' 
DO 
  N = N + 1 
  INPUT "Enter phone #, zip:"; P$(N), Z$(N) 
  PZ$(N) = Z$(N) + P$(N) 
LOOP UNTIL (P$(N) = "0000") AND (Z$(N) = "00000") 
N = N - 1 
FOR I = 1 TO N - 1 
  FOR J = I + 1 TO N 
    IF PZ$(I) > PZ$(J) THEN 
      SWAP PZ$(I), PZ$(J) 
      SWAP P$(I), P$(J) 
      SWAP Z$(I), Z$(J) 
    END IF 
  NEXT J 
NEXT I 
FOR I = 1 TO N: PRINT P$(I): NEXT I 
 
 
'2.8 
' This program will display number of runs of letters. 
' 
INPUT "Enter letters:"; LET$ 
FOR I = 1 TO LEN(LET$) 
  CH$ = MID$(LET$, I, 1) 
  IF INSTR("ABCDEFGHIJKLM", CH$) > 0 THEN 
    IF HALF2 THEN H2 = H2 + 1: HALF2 = 0 
    HALF1 = -1 
  ELSE 
    IF HALF1 THEN H1 = H1 + 1: HALF1 = 0 
    HALF2 = -1 
  END IF 
NEXT I 
IF HALF1 THEN H1 = H1 + 1 
IF HALF2 THEN H2 = H2 + 1 
PRINT "RUNS IN 1ST HALF ="; H1 
PRINT "RUNS IN 2ND HALF ="; H2 
 



88  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'2.9 
' This program reverses the order of letters in each word. 
' 
INPUT "Enter string:"; S$: S$ = S$ + " " 
FOR I = 1 TO LEN(S$) 
  MD$ = MID$(S$, I, 1) 
  IF MD$ = " " THEN 
    L = LEN(W$): PAL = -1 
    FOR J = 1 TO L / 2 
      IF MID$(W$, J, 1) <> MID$(W$, L - J + 1, 1) THEN PAL = 0 
    NEXT J 
    IF PAL THEN 
      PRINT STRING$(LEN(W$), "?"); 
    ELSE 
      FOR J = L TO 1 STEP -1: PRINT MID$(W$, J, 1); : NEXT J 
    END IF 
    PRINT " "; : W$ = "" 
  ELSE 
    W$ = W$ + MD$ 
  END IF 
NEXT I 
PRINT 
 
 
'2.10 
' This program determines day of week for a given date. 
' 
DIM MONNUM(12) 
DATA 1,4,4,0,2,5,0,3,6,1,4,6 
FOR I = 1 TO 12: READ MONNUM(I): NEXT I 
INPUT "Enter month, day, year:"; MONTH, DAY, YEAR 
LAST2 = YEAR MOD 100 
SUM = LAST2 + INT(LAST2 / 4) 
LEAPYEAR = (YEAR MOD 4 = 0) AND (YEAR MOD 100 > 0) 
LEAPYEAR = LEAPYEAR OR (YEAR MOD 400 = 0) 
IF (MONTH < 3) AND LEAPYEAR THEN 
  IF MONTH = 2 THEN SUM = SUM + 3   'New Month Number 
ELSE 
  SUM = SUM + MONNUM(MONTH) 
END IF 
SUM = SUM + DAY 
SELECT CASE YEAR 
  CASE IS < 1800: SUM = SUM + 4 
  CASE IS < 1900: SUM = SUM + 2 
  CASE IS < 2000: 
  CASE IS < 2100: SUM = SUM + 6 
  CASE IS < 2200: SUM = SUM + 4 
END SELECT 
R = SUM MOD 7 
DATA SATURDAY,SUNDAY,MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY 
FOR I = 1 TO R + 1: READ D$: NEXT I 
PRINT D$ 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  89  

'3.1 
' This program displays the appearance of 3-dimensional book. 
' 
INPUT "Enter title 1:"; T1$ 
INPUT "Enter title 2:"; T2$ 
IF LEN(T1$) > LEN(T2$) THEN 
  MAX = LEN(T1$): DIF = INT((MAX - LEN(T2$)) / 2) 
  T2$ = SPACE$(DIF) + T2$ + SPACE$(DIF + 1) 
ELSE 
  MAX = LEN(T2$): DIF = INT((MAX - LEN(T1$)) / 2) 
  T1$ = SPACE$(DIF) + T1$ + SPACE$(DIF + 1) 
END IF 
CLS 
PRINT "    /---/!" 
PRINT "   /   / !" 
PRINT "  /   /  !" 
PRINT " /   /   !" 
PRINT "!---!    !" 
FOR ROW = 1 TO MAX 
  PRINT "!"; 
  PRINT MID$(T2$, ROW, 1); " "; 
  PRINT MID$(T1$, ROW, 1); "!"; 
  IF ROW < MAX - 3 THEN 
    PRINT SPACE$(4); "!" 
  ELSE 
    PRINT SPACE$(MAX - ROW + 1); "/" 
  END IF 
NEXT ROW 
PRINT "!---!/" 
 



90  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.2 
' This program produces a prime factors tree. 
' 
DIM P(100) 
INPUT "Enter number:"; NUM 
CLS : PRINT TAB(5); NUM 
LEFT = 5: RIGHT = LEFT + LEN(STR$(NUM))  'Position of / and \ 
DO 
  ' Find smallest prime that divides number 
  IF NUM MOD 2 = 0 THEN 
    PR = 2 
  ELSE 
    PR = 1 
    DO 
      PR = PR + 2 
    LOOP UNTIL (NUM MOD PR = 0) 
  END IF 
  DIVIDEND = NUM / PR 
  IF DIVIDEND > 1 THEN 
    PRINT TAB(LEFT); "/"; TAB(RIGHT); "\" 
    LNUM$ = LTRIM$(STR$(PR)): RNUM$ = LTRIM$(STR$(DIVIDEND)) 
    L = LEN(LNUM$): R = LEN(RNUM$) 
    PRINT TAB(LEFT - L); LNUM$; TAB(RIGHT + 1); RNUM$ 
    LEFT = RIGHT: RIGHT = RIGHT + R + 1 
  END IF 
  NUM = DIVIDEND 
LOOP UNTIL NUM = 1 
 
 
 
'3.3 
' This program simulates a "base four" calculator. 
' 
INPUT "Enter base 4 expression:"; E$: E$ = E$ + "+" 
SYM$(1) = "+" 
FOR I = 1 TO LEN(E$) 
  CH$ = MID$(E$, I, 1) 
  IF CH$ = "+" OR CH$ = "-" THEN 
    J = J + 1: NUM$(J) = N$: SYM$(J + 1) = CH$: N$ = "" 
  ELSE 
    N$ = N$ + CH$ 
  END IF 
NEXT I 
' Convert base 4 numbers to base 10 and perform arithmetic 
FOR I = 1 TO J 
  L = LEN(NUM$(I)): B10 = 0 
  FOR J = 1 TO L 
    DIG = VAL(MID$(NUM$(I), J, 1)) 
    B10 = B10 + DIG * 4 ^ (L - J) 
  NEXT J 
  IF SYM$(I) = "-" THEN B10 = (-B10) 
  TOTAL = TOTAL + B10 
NEXT I 
' Convert base 10 number to base 4 
IF TOTAL < 0 THEN PRINT "-"; : TOTAL = (-TOTAL) 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  91  

J = INT(LOG(TOTAL) / LOG(4) + .001) 
FOR I = J TO 0 STEP -1 
  POW = 4 ^ I 
  X = INT(TOTAL / POW): PRINT USING "#"; X; 
  TOTAL = TOTAL - X * POW 
NEXT I 
PRINT 
 
 
'3.4 
' This program calculates contractor's pay = time * rate 
' 
INPUT "Enter pay/hour:"; RATE 
INPUT "Enter start time:"; ST$ 
INPUT "Enter finish time:"; FI$ 
STHOUR = VAL(MID$(ST$, 1, 2)) 
FIHOUR = VAL(MID$(FI$, 1, 2)) 
STMIN = VAL(MID$(ST$, 4, 2)) 
FIMIN = VAL(MID$(FI$, 4, 2)) 
' Adjust for 12AM and times from 1PM - 11PM 
IF STHOUR = 12 THEN 
  IF MID$(ST$, 6, 2) = "AM" THEN STHOUR = STHOUR - 12 
ELSE 
  IF MID$(ST$, 6, 2) = "PM" THEN STHOUR = STHOUR + 12 
END IF 
IF FIHOUR = 12 THEN 
  IF MID$(FI$, 6, 2) = "AM" THEN FIHOUR = FIHOUR - 12 
ELSE 
  IF MID$(FI$, 6, 2) = "PM" THEN FIHOUR = FIHOUR + 12 
END IF 
' Adjust for a late starting time and early morning finish 
IF STHOUR > FIHOUR THEN FIHOUR = FIHOUR + 24 
' Compute difference in time (finish - start) 
TIME = (FIHOUR - STHOUR) + (FIMIN - STMIN) / 60 
' If more than half of time is outside normal hours (7AM - 5PM) 
' then add a shift differential of 10% to rate. 
IF (7 - STHOUR) + (0 - STMIN) / 60 >= TIME / 2 THEN 
  ' More than half of time is worked before 7AM 
  RATE = RATE * 1.1 
END IF 
IF (FIHOUR - 17) + (FIMIN) / 60 >= TIME / 2 THEN 
  ' More than half of time is worked after 5PM 
  RATE = RATE * 1.1 
END IF 
PRINT USING "$###.##"; TIME * RATE 
 
 



92  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.5 
' This program will display the button that leads to the others. 
' 
FOR I = 1 TO 4 
  INPUT "Enter row:"; ROW$ 
  FOR J = 1 TO 4 
    N(I, J) = VAL(MID$(ROW$, J * 3 - 2, 1)) 
    D$(I, J) = MID$(ROW$, J * 3 - 1, 1) 
  NEXT J 
NEXT I 
FOR I = 1 TO 4 
 FOR J = 1 TO 4 
   FOR K = 1 TO 4: FOR L = 1 TO 4: A(K, L) = 0: NEXT L, K 
   R = I: C = J: A(R, C) = -1: PRESS = 1: GOOD = -1 
   DO 
     SELECT CASE D$(R, C) 
       CASE "D": R = R + N(R, C) 
       CASE "U": R = R - N(R, C) 
       CASE "L": C = C - N(R, C) 
       CASE "R": C = C + N(R, C) 
     END SELECT 
     IF A(R, C) THEN 
       GOOD = 0 
     ELSE 
       A(R, C) = -1: PRESS = PRESS + 1 
     END IF 
   LOOP UNTIL (NOT GOOD) OR (PRESS = 16) 
   IF PRESS = 16 THEN 
     PRINT USING "FIRST BUTTON = #"; N(I, J); : PRINT D$(I, J) 
     PRINT "AT ROW = "; : PRINT USING "#"; I; 
     PRINT USING ", COL = #"; J: END 
   END IF 
 NEXT J 
NEXT I 
 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  93  

'3.6 
' This program will generate odd size magic squares. 
' 
INPUT "Enter order, first number, increment: "; N, FIRST, INC 
DIM A(N, N) 
X = 1: Y = (N + 1) / 2: A(X, Y) = FIRST 
FOR I = 2 TO N * N 
  X = X - 1: Y = Y + 1 
  IF X = 0 THEN X = N 
  IF Y > N THEN Y = 1 
  IF A(X, Y) = 0 THEN 
    A(X, Y) = FIRST + INC * (I - 1) 
  ELSE 
    X = X + 2: Y = Y - 1 
    IF X > N THEN X = X - N 
    IF Y = 0 THEN Y = N 
    A(X, Y) = FIRST + INC * (I - 1) 
  END IF 
NEXT I 
' Display Magic Number and Square 
FOR I = 1 TO N: MAGICNUM = MAGICNUM + A(I, 1): NEXT I 
PRINT "MAGIC NUMBER ="; MAGICNUM 
FOR I = 1 TO N 
  FOR J = 1 TO N 
    PRINT USING "####"; A(I, J); 
  NEXT J: PRINT 
NEXT I 
 



94  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.7 
' This program will generate 6x6 magic squares. 
' 
INPUT "Enter first number, increment: "; FIRSTN, INC 
' Four 3x3 squares are made for the 6x6 matrix B() 
' upper-left, bottom-right, upper-right, bottom-left 
DATA 0,0, 1,1, 0,1, 1,0 
FOR SQ = 0 TO 3 
  FIRST = FIRSTN + SQ * 9 * INC 
  GOSUB Generate3x3 
  READ R, C 
  FOR I = 1 TO 3 
    FOR J = 1 TO 3 
      B(R * 3 + I, C * 3 + J) = A(I, J) 
    NEXT J 
  NEXT I 
NEXT SQ 
' Transpose three cells 
SWAP B(1, 1), B(4, 1) 
SWAP B(2, 2), B(5, 2) 
SWAP B(3, 1), B(6, 1) 
' Display 6x6 matrix 
FOR I = 1 TO 6: MAGICNUM = MAGICNUM + B(I, 1): NEXT I 
PRINT "MAGIC NUMBER ="; MAGICNUM 
FOR I = 1 TO 6 
  FOR J = 1 TO 6 
    PRINT USING "####"; B(I, J); 
  NEXT J: PRINT 
NEXT I 
END 
 
Generate3x3:  'Generate a 3x3 magic square in A(1..3,1..3) 
  FOR I = 1 TO 3: FOR J = 1 TO 3: A(I, J) = 0: NEXT J, I 
  N = 3 
  X = 1: Y = (N + 1) / 2: A(X, Y) = FIRST 
  FOR I = 2 TO N * N 
    X = X - 1: Y = Y + 1 
    IF X = 0 THEN X = N 
    IF Y > N THEN Y = 1 
    IF A(X, Y) = 0 THEN 
      A(X, Y) = FIRST + INC * (I - 1) 
    ELSE 
      X = X + 2: Y = Y - 1 
      IF X > N THEN X = X - N 
      IF Y = 0 THEN Y = N 
      A(X, Y) = FIRST + INC * (I - 1) 
    END IF 
  NEXT I 
RETURN 
 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  95  

'3.8 
' This program will display a pie graph. 
' 
DIM A(21, 21) 
INPUT "Enter 3 percentages: "; P(1), P(2), P(3) 
A$(1) = "A": A$(2) = "D": A$(3) = "N" 
CLS : PI = 3.14159 
' Draw circle 
FOR I = -PI / 2 TO 3 / 2 * PI STEP .1 
  X = COS(I) * 10:  Y = SIN(I) * 10 
  LOCATE 11 + Y, 11 + X: PRINT "*": A(11 + Y, 11 + X) = 1 
NEXT I 
' Draw 3 line segments from center 
FOR S = 0 TO 2 
  SUM = SUM + P(S) 
  I = -PI / 2 + 2 * PI * SUM / 100 
  FOR R = 0 TO 10 
    X = COS(I) * R: Y = SIN(I) * R 
    LOCATE 11 + Y, 11 + X: PRINT "*": A(11 + Y, 11 + X) = 1 
  NEXT R 
NEXT S 
A$ = INPUT$(1):  SUM = 0 
' Fill regions with letters 
FOR S = 1 TO 3 
  LSUM = SUM:  SUM = SUM + P(S) 
  FOR L = LSUM TO SUM 
    I = -PI / 2 + 2 * PI * L / 100 
    FOR R = 1 TO 9 
      X = COS(I) * R: Y = SIN(I) * R 
      IF A(11 + Y, 11 + X) = 0 THEN 
        LOCATE 11 + Y, 11 + X: PRINT A$(S) 
      END IF 
    NEXT R 
  NEXT L 
NEXT S 
 



96  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

'3.9 
' This program produces a precedence of jobs to run. 
' 
INPUT "Enter number of dependencies:"; NUM 
FOR I = 1 TO NUM 
  INPUT "Enter dependency:"; DEP$: DEP$ = DEP$ + " " 
  A$(I) = MID$(DEP$, 1, 3) 
  B$(I) = MID$(DEP$, 4, 3) 
  ' Store unique jobs in string 
  IF INSTR(U$, A$(I)) = 0 THEN U$ = U$ + A$(I) 
  IF INSTR(U$, B$(I)) = 0 THEN U$ = U$ + B$(I) 
NEXT I 
' Since there is a unique order for all the jobs, 
' every job will have its successor somewhere in B(). 
' 1) search all B() for the only job missing. 
' 2) exclude all dependencies with this job in it. 
' 3) search all B() for the next only job missing. 
' 4) repeat steps 2 and 3 until the final dependency is left. 
L = LEN(U$): UNUM = L / 3: U2$ = U$: DEPLEFT = NUM:  JOBS$ = "" 
WHILE DEPLEFT > 1 
  FOR I = 1 TO NUM: MARKED(I) = 0: NEXT I 
  FOR I = 1 TO NUM 
    P = INSTR(U2$, B$(I)) 
    IF P > 0 THEN MARKED((P + 2) / 3) = -1 
  NEXT I 
  NOJOB = -1: I = 0 
  WHILE NOJOB AND (I < UNUM) 
    I = I + 1: ST = I * 3 - 2 
    JOB$ = MID$(U2$, ST, 3) 
    VALIDJOB = (INSTR(JOBS$, JOB$) = 0) AND (JOB$ <> SPACE$(3)) 
    IF VALIDJOB AND NOT MARKED(I) THEN 
      JOBS$ = JOBS$ + JOB$ 
      FOR K = 1 TO NUM 
        IF A$(K) = JOB$ THEN 
          A$(K) = "*": B$(K) = "*" 
          DEPLEFT = DEPLEFT - 1 
        END IF 
      NEXT K 
      NEWU2$ = MID$(U2$, 1, ST - 1) + SPACE$(3) 
      U2$ = NEWU2$ + MID$(U2$, ST + 3, L - ST - 2) 
      NOJOB = 0 
    END IF 
  WEND 
WEND 
' Last dependency is concatenated 
FOR I = 1 TO NUM 
  IF A$(I) <> "*" THEN JOBS$ = JOBS$ + A$(I) + B$(I) 
NEXT I 
PRINT "JOBS MUST BE RUN IN THIS ORDER: "; JOBS$ 
 



 FHSCC '96 BASIC PROGRAM SOLUTIONS  97  

'3.10 
' This program finds a perfect square with digits 1-9. 
' 
DEFINT B, Z: DEFLNG A, N: MIN = 9 
FOR NUM = 10001 TO INT(SQR(987654321)) 
  A = NUM * NUM 
  DIGITS$ = LTRIM$(STR$(A)) 
  GOOD = -1: L = 1 
  WHILE (L <= 9) AND GOOD 
    IF INSTR(DIGITS$, CHR$(48 + L)) = 0 THEN GOOD = 0 
    L = L + 1 
  WEND 
  IF GOOD THEN         'Found perfect square with unique digits 
    GOSUB CheckDigits  'Count will contain number of swaps made 
    IF COUNT < MIN THEN MIN = COUNT: NUMMIN = A: NUMMIN2 = NUM 
  END IF 
NEXT NUM 
' Display the perfect square needing least number of swaps 
DIGITS$ = LTRIM$(STR$(NUMMIN)) 
PRINT DIGITS$; " IS THE SQUARE OF"; NUMMIN2 
PRINT "AND WAS FORMED BY EXCHANGING"; MIN; "PAIRS OF DIGITS" 
END 
 
CheckDigits:  'Determine number of swaps made and store in count 
  FOR I = 1 TO 9: A(I) = VAL(MID$(DIGITS$, I, 1)): NEXT I 
  COUNT = 0 
  FOR I = 1 TO 9 
    IF A(I) <> I THEN 
      J = I + 1 
      WHILE J < 9 AND A(J) <> I 
        J = J + 1 
      WEND 
      SWAP A(I), A(J): COUNT = COUNT + 1 
    END IF 
  NEXT I 
  RETURN 
 



98  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{ -- FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '95 } 
{ -- PASCAL PROGRAM SOLUTIONS } 
 
 
{1.1} 
program One1T95; 
{ -- This program displays title of contest forward/backward. } 
  const 
    A: String[50] = 
       'FLORIDA HIGH SCHOOLS COMPUTING COMPETITION ''95'; 
  var 
    I, J: Integer; 
 
begin 
  for I := 1 to 4 do begin 
    Writeln (A); 
    for J := Length(A) downto 1 do 
      Write(Copy(A, J, 1)); 
    Writeln; 
  end; 
end. 
 
 
{1.2} 
program One2T95; 
{ -- This program generates comments in different languages. } 
  var 
    C: String[60]; 
 
begin 
  Write ('Enter comment: ');  Readln (C); 
  Writeln ('BASIC: '' ', C); 
  Writeln ('PASCAL: { ', C, ' }'); 
  Writeln ('C: /* ', C, ' */'); 
  Writeln ('C++: // ', C); 
end. 
 
 
{1.3} 
program One3T95; 
{ -- This program either increments or decrements N by 1. } 
  var 
    N:  Integer; 
    Op: String[2]; 
 
begin 
  Write ('Enter N: ');  Readln (N); 
  Write ('Enter operator: ');  Readln (Op); 
  if Op = '++' then 
    Writeln (N + 1) 
  else 
    Writeln (N - 1); 
end. 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  99  

{1.4} 
program One4T95; 
{ -- This program rounds to three places by break point. } 
  var 
    BP:  Integer; 
    Num: Real; 
 
begin 
  Write ('Enter break point: ');  Readln (BP); 
  Write ('Enter number: ');  Readln (Num); 
  Writeln ( Trunc((Num * 1000 + (10 - BP) / 10)) / 1000 :5:3); 
end. 
 
 
{1.5} 
program One5T95; 
{ -- This program determines if a program is a REXX or a CLIST. } 
  var 
    C: String[80]; 
 
begin 
  Write ('Enter comment: ');  Readln (C); 
  if Pos('REXX', C) > 0 then 
    Writeln ('REXX') 
  else 
    Writeln ('CLIST'); 
end. 
 
 
{1.6} 
program One6T95; 
{ -- This program displays the number of times variables appear.} 
  var 
    Num, Init, Init0: Integer; 
 
begin 
  Write ('Enter number of variables: ');  Readln (Num); 
  Write ('Enter number initialized: ');   Readln (Init); 
  Write ('Enter number initialized to 0: ');  Readln (Init0); 
  Writeln ('BASIC = ', Init - Init0); 
  Writeln ('PASCAL = ', Num + Init); 
  Writeln ('C/C++ = ', Num); 
end. 
 



100  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{1.7} 
program One7T95; 
{ -- This program displays last qualifier of a data set name. } 
  var 
    DSN:  String[44]; 
    Last: String[8]; 
    I:    Integer; 
    Ch:   Char; 
 
begin 
  Write ('Enter data set name: ');  Readln (DSN); 
  Last := ''; 
  for I := Length(DSN) downto 1 do begin 
    Ch := DSN[I]; 
    if Ch = '.' then begin 
      Writeln (Last); Exit; end 
    else 
      Last := Ch + Last; 
  end; 
end. 
 
 
{1.8} 
program One8T95; 
{ -- This program displays real numbers in reverse order. } 
  var 
    I, N: Byte; 
    A:    Array[1..10] of String[10]; 
 
begin 
  Write ('Enter N: ');  Readln (N); 
  for I := 1 to N do begin 
    Write ('Enter #: ');  Readln (A[I]); 
  end; 
  Writeln; 
  for I := N downto 1 do 
    Writeln (A[I]); 
end. 
 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  101  

{1.9} 
program One9T95; 
{ -- This program displays a large X made up of letter X's. } 
uses Crt; 
  var 
    Num, I: Byte; 
 
begin 
  Write ('Enter number of X''s: ');  Readln (Num); 
  ClrScr; 
  for I := 1 to Num do begin 
    GotoXY (I, I);  Write ('X'); 
    GotoXY (Num - I + 1, I);  Write ('X'); 
  end; 
end. 
 
 
{1.10} 
program One10T95; 
{ -- This program will display the savings in postage. } 
  const 
    Cost = 23.33333; 
  var 
    PS, SS, Oz1, Oz2, Page1, Page2: Integer; 
 
begin 
  Write ('Enter # of printed sides: ');  Readln (PS); 
  Write ('Enter # of single sided pages: ');  Readln (SS); 
  { -- Calculate # of pages and wieght for 1st bill } 
  Page1 := PS - 6;  Oz1 := 1; 
  Oz1 := Oz1 + (Page1 + 8) div 9; 
  { -- Calculate # of pages and wight for 2nd bill } 
  Page2 := SS + ((PS - SS + 1) div 2) - 6; 
  Oz2 := 1; 
  Oz2 := Oz2 + (Page2 + 8) div 9; 
  Writeln ((Oz1 - Oz2) * Cost :6:2, ' CENTS SAVED'); 
end. 



102  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{2.1} 
program Two1T95; 
{ -- This program finds integral solutions of (X,Y) for AX+BY=C } 
var 
  A, B, C, X: Integer; 
  Y:          Real; 
 
begin 
  Write ('Enter A, B, C: ');  Readln (A, B, C); 
  X := 1; 
  repeat 
    Y := (C - A * X) / B; 
    if Abs(Y - Trunc(Y)) < 0.001 then begin 
      Writeln ('(', X, ',', Y :1:0, ')');  Exit; 
    end; 
    Inc(X); 
  until X > 10000; 
end. 
 
 
{2.2} 
program Two2T95; 
 
{ -- This program verifies a number by validating check digit. } 
  var 
    Part:            String[20]; 
    Prod, Sum, Code: Integer; 
    I, L, Digit, ChkDigit, LastDigit: Byte; 
 
begin 
  Write ('Enter part number: ');  Readln (Part); 
  L := Length(Part);  Prod := 1; 
  for I := 1 to L - 1 do begin 
    Val(Copy(Part, I, 1), Digit, Code); 
    Sum := Sum + Digit * ((I mod 2) + 1); 
  end; 
  { -- Subtract units digit of Sum from 9 for check digit } 
  ChkDigit := 9 - (Sum mod 10); 
  Val(Copy(Part, L, 1), LastDigit, Code); 
  if ChkDigit = LastDigit then 
    Writeln ('OKAY') 
  else 
    Writeln ('ERROR -- CHECK DIGIT SHOULD BE ', ChkDigit); 
end. 
 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  103  

{2.3} 
program Two3T95; 
{ -- This program determines # of prizes given of $13 million. } 
  var 
    Prize: LongInt; 
    Pow:   Array[0..7] of LongInt; 
    A:     Array[0..6] of Byte; 
    I:     Byte; 
 
begin 
  Prize := 13000000; 
  { -- Same algorithm is used as converting # to base 13 #. } 
  Pow[7] := 1; 
  for I := 1 to 7 do Pow[7] := Pow[7] * 13; 
  for I := 6 downto 0 do begin 
    Pow[I] := Pow[I+1] div 13; 
    A[I]   := Prize div Pow[I]; 
    Prize  := Prize mod Pow[I]; 
  end; 
  for I := 0 to 6 do 
    Writeln ('$', Pow[I], ' = ', A[I]); 
end. 
 



104  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{2.4} 
program Two4T95; 
{ -- This program determines the cost of Directory Assistance. } 
  var 
    DAC, Area:      String[11]; 
    I, N, LocalDAC: Byte; 
    Tot, Cost:      Real; 
 
begin 
  Write ('Enter number of DACs: ');  Readln (N); 
  for I := 1 to N do begin 
    Write ('Enter DAC: ');  Readln (DAC); 
    if DAC = '00' then 
      Cost := 3.00 
    else if DAC = '1411' then begin 
      Inc(LocalDAC);  Cost := 0;  end 
    else begin 
      Area := Copy(DAC, 2, 3); 
      if Area = '813' then 
        Cost := 0.25 
      else 
        if (Area = '305') or (Area = '407') or (Area = '904') then 
          Cost := 0.40 
        else 
          Cost := 0.65; 
    end; 
    Tot := Tot + Cost; 
  end;  { -- for I } 
  { -- Every local DAC after the third cost 25 cents } 
  if LocalDAC > 3 then 
    Tot := Tot + (LocalDAC - 3) * 0.25; 
  Writeln (Tot: 5:2, ' DOLLARS'); 
end. 
 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  105  

{2.5} 
program Two5T95; 
{ -- This program will display the heading of even/odd pages. } 
  const 
    PNum: Array [1..4] of Integer = (180, 140, 200, 260); 
    P:    Array [1..4] of String[17] = 
          ('PROBLEMS', 'JUDGING CRITERIA', 
           'BASIC SOLUTIONS', 'PASCAL SOLUTIONS'); 
  var 
    I, Pag, Page, Chapter: Integer; 
 
begin 
  Write ('Enter page number: ');  Readln (Page); 
  if Page mod 2 = 0 then begin 
    Write (Page, '  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION'); 
    Writeln (' 1985 - 1994'); 
    end 
  else begin 
    Write ('FHSCC '''); 
    I := 1;  Pag := Page; 
    while Pag > PNum[I] do begin 
      Pag := Pag - PNum[I];  Inc(I); 
    end; 
    Chapter := Trunc(Pag / (PNum[I] / 10)); 
    Writeln (85 + Chapter, ' ', P[I], '  ', Page); 
  end; 
end. 
 



106  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{2.6} 
program Two6T95; 
{ -- This program computes total ESTIMATED PREPARATION TIME. } 
  const 
    Form: Array[1..6] of String[4] = ('1040','A','B','C','D','E'); 
    Hr  : Array[1..6,1..4] of Integer = ((3,2,4,0), (2,0,1,0), 
          (0,0,0,0), (6,1,2,0), (0,0,1,0), (2,1,1,0)); 
    Min : Array[1..6,1..4] of Integer = ((8,53,41,53), 
          (32,26,10,27), (33,8,17,20), (26,10,5,35), 
          (51,42,1,41), (52,7,16,35)); 
  var 
    I, J, TotHr, TotMin: Integer; 
    F: String[4]; 
 
begin 
  I := 0; 
  repeat 
    Write ('Enter form: ');  Readln (F); 
    I := 1; 
    while (I < 7) and (F <> Form[I]) do Inc(I); 
    if I < 7 then 
      for J := 1 to 4 do begin 
        Inc(TotHr, Hr[I,J]); 
        Inc(TotMin, Min[I,J]); 
 
      end; 
  until I > 6; 
 
  Inc(TotHr, TotMin div 60); 
  TotMin := TotMin mod 60; 
  Writeln (TotHr, ' HR., ', TotMin, ' MIN.'); 
end. 
 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  107  

{2.7} 
program Two7T95; 
{ -- This program will calculate investments at GTE. } 
  const 
    BegPrice: Real = 27.20; 
    Return401K: Real = 0.14; 
  var 
    Salary, Percent, EndPrice, StockGain: Real; 
    CompCont, EmpCont, K401, TotalGain:   Real; 
    MaxShares, Shares:                    Integer; 
 
begin 
  Write ('Enter salary: ');  Readln (Salary); 
  Write ('Enter 401K %: ');  Readln (Percent); 
  Percent := Percent / 100; 
  MaxShares := Trunc(Salary / 100); 
  Writeln ('YOU CAN PURCHASE UP TO ', MaxShares, ' SHARES'); 
  Write ('Enter number of shares: ');  Readln (Shares); 
  Write ('Enter end of year price: '); Readln (EndPrice); 
 
  EmpCont := Salary * Percent; 
  if Percent >= 0.06 then 
    CompCont := (Salary * 0.06) * 0.75 
  else 
    CompCont := (Salary * Percent) * 0.75; 
  K401 := (EmpCont + CompCont) * Return401K; 
  StockGain := Shares * (EndPrice - BegPrice); 
  TotalGain := CompCont + K401 + StockGain; 
 
  Writeln ('COMPANY CONTRIBUTION: ', CompCont  :8:2); 
  Writeln ('         401K RETURN: ', K401      :8:2); 
  Writeln ('          STOCK GAIN: ', StockGain :8:2); 
  Writeln ('          TOTAL GAIN: ', TotalGain :8:2); 
end. 
 



108  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{2.8} 
program Two8T95; 
{ -- This program will produce loops of a spiral using letters. } 
uses Crt; 
  var 
    Num, Row, Col, Incr, LoopNum, I: Byte; 
    Let: Char; 
 
begin 
  Write ('Enter number of spiral loops: ');  Readln (Num); 
  Write ('Enter first letter: ');  Readln (Let); 
  ClrScr; 
  Row := 12;  Col := 40;  Incr := 1; 
  while LoopNum < Num do begin 
    Incr := Incr + 2; 
    { -- Go right } 
    GotoXY (Col, Row);  for I := 1 to Incr do Write (Let); 
    Col := Col + Incr - 1; 
    { -- Go down } 
    for I := 1 to Incr - 1 do begin 
      GotoXY (Col, Row + I);  Write (Let); 
    end; 
    Row := Row + Incr - 1;  Incr := Incr + 2; 
    { -- Go left } 
    Col := Col - Incr + 1; 
    GotoXY (Col, Row);  for I := 1 to Incr do Write (Let); 
    { -- Go up } 
    for I := 1 to Incr - 2 do begin 
      GotoXY (Col, Row - I);  Write (Let); 
    end; 
    Row := Row - Incr + 1; 
    if Let = 'Z' then 
      Let := 'A' 
    else 
      Let := Chr(Ord(Let) + 1); 
    Inc(LoopNum); 
  end; 
end. 
 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  109  

{2.9} 
program Two9T95; 
{ -- This program shows all possible moves for a Queen in chess.} 
uses Crt; 
  var 
    Col, Row, I, J, Code: Integer; 
    RC:    String[2]; 
    R, C:  Array[1..4] of Integer; 
 
begin 
  Write ('Enter column and row: ');  Readln (RC); 
  Col := Ord(RC[1]) - Ord('A') + 1; 
  Val(Copy(RC, 2, 1), Row, Code); 
  Row := 9 - Row; 
  ClrScr; 
  for I := 8 downto 1 do Writeln (I); 
  Writeln ('  A B C D E F G H'); 
  { -- Horizontal moves } 
  GotoXY (3, Row);  Writeln ('* * * * * * * *'); 
  { -- Vertical moves } 
  for I := 1 to 8 do begin 
    GotoXY (Col * 2 + 1, I);  Write ('*'); 
  end; 
  { -- Diagonal moves } 
  for I := 1 to 7 do begin 
    R[1] := Row - I;  C[1] := Col - I; 
    R[2] := Row + I;  C[2] := Col + I; 
    R[3] := Row - I;  C[3] := Col + I; 
    R[4] := Row + I;  C[4] := Col - I; 
    for J := 1 to 4 do 
      if (R[J] > 0) and (R[J] < 9) and (C[J] > 0) and (C[J] < 9) 
      then begin 
        GotoXY (C[J] * 2 + 1, R[J]);  Write ('*'); 
      end; 
  end; 
  GotoXY (Col * 2 + 1, Row);  Write('Q'); 
end. 
 



110  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{2.10} 
program Two10T95; 
{ -- This program tabulates information during a pre-election. } 
  const 
    A: Array[1..10] of String[37] = ('MALE', 'FEMALE', 
       '50 AND BELOW', 'OVER 50', 'WHITE', 'OTHERS', 
       'ABOVE $25000', '$25000 AND BELOW', 
       'WHITE MALE OVER 50 AND ABOVE $25000', 'OTHER'); 
  var 
    Sex, Race, Party:         Char; 
    Income:                   LongInt; 
    Row, Col, Age, Total:     Byte; 
    Sum: Array[1..10,1..2] of Byte; 
 
begin 
  Total := 0; 
  for Row := 1 to 10 do 
    for Col := 1 to 2 do 
      Sum[Row, Col] := 0; 
  Write ('Enter sex: ');  Readln (Sex); 
  while (Sex <> 'E') do begin 
    Write ('Enter age: ');    Readln (Age); 
    Write ('Enter race: ');   Readln (Race); 
    Write ('Enter income: '); Readln (Income); 
    Write ('Enter party: ');  Readln (Party); 
    if Party = 'D' then Col := 1 else Col := 2; 
    if Sex = 'M'   then Row := 1 else Row := 2; 
    Inc(Sum[Row,Col]); 
    if Age <= 50   then Row := 3 else Row := 4; 
    Inc(Sum[Row,Col]); 
    if Race = 'W'  then Row := 5 else Row := 6; 
    Inc(Sum[Row,Col]); 
    if Income > 25000 then Row := 7 else Row := 8; 
    Inc(Sum[Row,Col]); 
    if (Race = 'W') and (Sex = 'M') and (Age > 50) and (Row = 7) 
      then Row := 9 else Row := 10; 
    Inc(Sum[Row,Col]); 
    Inc(Total); 
    Writeln; 
    Write ('Enter sex: ');  Readln (Sex); 
  end; 
  Write (' ':32, 'DEMOCRATIC  REPUBLICAN'); 
  for Row := 1 to 10 do begin 
    if Row mod 2 = 1 then Writeln; 
    Write (A[Row], ' ': 37 - Length(A[Row])); 
    Write (Sum[Row, 1] / Total * 100 :5:1); 
    Writeln (' ':7, Sum[Row,2] / Total * 100 :5:1); 
  end; 
end. 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  111  

{3.1} 
program Thr1T95; 
{ -- This program will determine how much IRS owes/pays. } 
  const 
    Amount:    Array[0..5] of Real = 
               (0, 22750, 55100, 115000, 250000, 9999999); 
    Rate:      Array[0..5] of Real = 
               (0, 0.15, 0.28, 0.31, 0.36, 0.396); 
    StDeduct:  Real = 3800; 
    Exemption: Real = 2450; 
  var 
    Gross, Deductions, FedTax, Income, TaxInc, Tax: Real; 
    I, J: Byte; 
 
begin 
    Write ('Enter adjusted gross income: ');  Readln (Gross); 
    Write ('Enter itemized deductions: ');  Readln (Deductions); 
    Write ('Enter federal income tax withheld: '); 
    Readln (FedTax); 
    if Deductions > StDeduct then 
      Income := Gross - Deductions 
    else 
      Income := Gross - StDeduct; 
    TaxInc := Income - Exemption; 
 
    Tax := 0; 
    for I := 1 to 5 do 
      if TaxInc <= Amount[I] then begin 
        for J := 1 to I - 1 do 
          Tax := Tax + (Amount[J] - Amount[J-1]) * Rate[J]; 
        Tax := Tax + (TaxInc - Amount[I-1]) * Rate[I]; 
        Write (Abs(Tax - FedTax) :9:2, ' DOLLARS '); 
        if FedTax < Tax then 
          Writeln ('YOU OWE') 
        else 
          Writeln ('WILL BE REFUNDED TO YOU'); 
        Exit; 
      end; 
end. 
 
 
 
 
{3.2} 
program Thr2T95; 
{ -- This program will display a simplified phone bill. } 
  var 
    I, L, HH, Code:          Integer; 
    Rate1, Rate2, Tot, Disc: Real; 
    Min:     Array[1..10] of Byte; 
    Tim:     Array[1..10] of String[13]; 
    Charge:  Array[1..10] of Real; 
    AM, Day: String[3]; 
    Midday:  Boolean; 



112  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

 
begin 
  L := 1;  Tot := 0; 
  Write ('Enter MIN: ');  Readln (Min[L]); 
  while Min[L] > 0 do begin 
    Write ('Enter time: ');  Readln (Tim[L]); 
    Inc(L); 
    Write ('Enter MIN: ');   Readln (Min[L]); 
  end; 
  Dec(L); 
  { -- Display bill } 
  Writeln ('  BOB SMITH  (813) 555-1234');  Writeln; 
  Writeln ('  TIME OF DAY  MIN.  CHARGE'); 
  for I := 1 to L do begin 
    if Copy(Tim[I], 1, 1) = '0' then 
      Write (' ', Copy (Tim[I], 2, 12)) 
    else 
      Write (Tim[I]); 
    { -- Calculate charge } 
    Val(Copy(Tim[I], 1, 2), HH, Code); 
    AM := Copy(Tim[I], 7, 2); 
    Day := Copy(Tim[I], 11, 3); 
    Midday := (  (HH > 7)  and (HH < 12) and (AM = 'AM') 
              or (HH = 12) and (AM = 'PM') 
              or (HH < 5)  and (AM = 'PM') ); 
    if (HH > 4) and (HH < 11) and (AM = 'PM') and (Day <> 'SAT') 
    then 
      begin 
        Rate1 := 0.21;  Rate2 := 0.16; 
      end 
    else if Midday and (Day <> 'SAT') and (Day <> 'SUN') then 
      begin 
        Rate1 := 0.28;  Rate2 := 0.21; 
      end 
    else 
      begin 
        Rate1 := 0.14;  Rate2 := 0.11; 
      end; 
    Charge[I] := Rate1 + Rate2 * (Min[I] - 1); 
    Writeln (Min[I] :5, '   ', Charge[I]: 6:2); 
    Tot := Tot + Charge[I]; 
  end; 
  if Tot > 20 then Disc := Tot * 0.20; 
  Writeln; 
  Writeln ('TOTAL CHARGES', ' ': 8,  Tot: 6:2); 
  Writeln ('DISCOUNT',      ' ': 13, Disc: 6:2); 
  Writeln ('CHARGES - DISCOUNT   ',  Tot - Disc :6:2); 
end. 
 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  113  

{3.3} 
program Thr3T95; 
{ -- This program simulates a baseball game. } 
uses Crt; 
  var 
    I, Inn, T, S, B, W, R, O, Wtot, Otot: Byte; 
    Stot, Btot: Integer; 
    Run:        Array [1..2] of Byte; 
 
begin 
  Randomize;  ClrScr;  Writeln;  Write (' ': 7); 
  for I := 1 to 9 do Write (I:3); 
  Writeln ('  SCORE'); 
  Write (' ': 8); 
  for I := 1 to 34 do Write ('-'); 
  Writeln; 
  Writeln ('TEAM A !', ' ': 27, '!'); 
  Writeln ('TEAM B !', ' ': 27, '!'); 
  Stot := 0;  Btot := 0;  Otot := 0;  Wtot := 0; 
  Run[1] := 0;  Run[2] := 0; 
 
  for Inn := 1 to 9 do 
    for T := 1 to 2 do begin 
      S := 0;  B := 0;  W := 0;  R := 0;  O := 0; 
      while O < 3 do begin 
        if Random < 0.4 then begin 
          Inc(S);  Inc(Stot);  end 
        else begin 
          Inc(B);  Inc(Btot); 
        end; 
        if S = 3 then begin 
          Inc(O);  Inc(Otot);  S := 0;  W := 0; 
        end; 
        if B = 4 then begin 
          Inc(W);  Inc(Wtot);  B := 0;  S := 0 
        end; 
        if W = 4 then begin 
          Inc(R);  Inc(Run[T]);  W := 3; 
        end; 
      end; 
      GotoXY (6 + Inn * 3, 3 + T);  Write (R:2); 
    end;  { -- for T } 
 
  GotoXY (38, 4);  Writeln (Run[1]: 3); 
  GotoXY (38, 5);  Writeln (Run[2]: 3); 
  Writeln; 
  Writeln ('TOTAL # OF STRIKES: ', Stot); 
  Writeln ('TOTAL # OF BALLS: ', Btot); 
  Writeln ('TOTAL # OF WALKS: ', Wtot); 
  Writeln ('TOTAL # OF STRIKE OUTS: ', Otot); 
end. 
 



114  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{3.4} 
program Thr4T95; 
{ -- This program will produce all possible subsets of letters. } 
  var 
    Sub:       Array[1..1024] of String[10]; 
    Let, XSub: String[10]; 
    A:         Array[1..10] of Char; 
    X:         Char; 
    I, J, L, Col, SubLen, Bit: Byte; 
    N, Num, Two2L, Power:      Integer; 
 
begin 
  Write ('Enter letters: ');  Readln (Let); 
  L := Length(Let); 
  for I := 1 to L do A[I] := Let[I]; 
  { -- Sort letters in A[] } 
  for I := 1 to L - 1 do 
    for J := I + 1 to L do 
      if A[I] > A[J] then begin 
        X := A[I]; A[I] := A[J]; A[J] := X; 
      end; 
  { -- Generate binary numbers to produce all subsets } 
  Two2L := 1; 
  for I := 1 to L do Two2L := Two2L * 2; 
  for N := 0 to Two2L - 1 do begin 
    Num := N; Power := Two2L;  Sub[N] := ''; 
    for J := L - 1 downto 0 do begin 
      Power := Power div 2; 
      Bit := Num div Power; 
      if Bit = 1 then begin 
        Sub[N] := Sub[N] + A[L - J];  Num := Num - Power; 
      end; 
    end; 
  end; 
  { -- Bubble sort subsets } 
  for I := 0 to Two2L - 2 do 
    for J := I + 1 to Two2L - 1 do 
      if Sub[I] > Sub[J] then begin 
        XSub := Sub[I];  Sub[I] := Sub[J];  Sub[J] := XSub; 
      end; 
  { -- Display subsets } 
  Col := 0; 
  for I := 0 to Two2L - 1 do begin 
    SubLen := Length(Sub[I]) + 3; 
    if Col + SubLen > 50 then begin 
      Writeln;  Col := 0; 
    end; 
    Write ('{', Sub[I], '} '); 
    Col := Col + SubLen; 
  end; 
  Writeln;  Writeln('TOTAL SUBSETS = ', Two2L); 
end. 
 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  115  

{3.5} 
program Thr5T95; 
{ -- This program will sum big integers from 1 to N. } 
{ -- Gauss's formula: SUM = N * (N+1) / 2.           } 
  var 
    A, B, Prod, D:              Array[1..80] of Byte; 
    I, J, S, Carry, LenA, LenB: Byte; 
    N:                          String[40]; 
    Code:                       Integer; 
 
begin 
  Write ('Enter N: ');  Readln (N); 
  { -- Store digits of N in A[] and B[] } 
  LenA := Length(N);  LenB := LenA; 
  for I := 1 to LenA do begin 
    Val(Copy(N, LenA - I + 1, 1), A[I], Code); 
    B[I] := A[I]; 
  end; 
  { -- Add 1 to number in B[] } 
  Inc(B[1]);  I := 1; 
  while (B[I] = 10) do begin 
    B[I] := 0;  Inc(I);  Inc(B[I]); 
  end; 
  if I > LenB then LenB := I; 
  { -- Multiply A[] by B[] } 
  for I := 1 to LenA do begin 
    Carry := 0; 
    for J := 1 to LenB do begin 
      S := I + J - 1; 
      Prod[S] := Prod[S] + A[I] * B[J] + Carry; 
      Carry := Prod[S] div 10; 
      Prod[S] := Prod[S] - Carry * 10; 
    end; 
    if Carry > 0 then Prod[S+1] := Carry; 
  end; 
  if Carry > 0 then Inc(S); 
  { -- Divide product Prod[] by 2 } 
  if Prod[S] = 1 then begin 
    Dec(S);  Carry := 10; 
  end; 
  for I := S downto 1 do begin 
    D[I] := (Prod[I] + Carry) div 2; 
    Carry := (Prod[I] mod 2) * 10; 
  end; 
  { -- Display answer in D[] } 
  for I := S downto 1 do  Write (D[I]); 
  Writeln; 
end. 
 



116  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{3.6} 
program Thr6T95; 
{ -- This program will assign values to variables in BASIC code.} 
  var 
    L, I, PosV, PosV2, PosV3, Num1, Num2, Code: Integer; 
    A: Array[1..12] of String[5]; 
    B: Array[1..12] of Integer; 
    V, Ch, Op: Char; 
    AllV: String[5]; 
 
begin 
  L := 0; 
  repeat 
    Inc(L); 
    Write ('Enter line: ');  Readln (A[L]); 
  until A[L] = 'END'; 
  Dec(L); 
 
  AllV := ''; 
  for I := 1 to L do begin 
    { -- Determine if first variable is new or old } 
    V := A[I,1]; 
    PosV := Pos(V, AllV); 
    if PosV = 0 then begin 
      AllV := AllV + V; 
      PosV := Length(AllV); 
    end; 
    { -- Assign value for first number } 
    Ch := A[I,3]; 
    if (Ch in ['0'..'9']) then 
      Val(Ch, Num1, Code) 
    else begin 
      PosV2 := Pos(Ch, AllV); 
      Num1 := B[PosV2]; 
    end; 
 
    if Length(A[I]) = 3 then 
      { -- Assign first number to current variable } 
      B[PosV] := Num1 
    else begin 
      { -- Assign value for second number } 
      Ch := A[I,5]; 
      if Ch in ['0'..'9'] then 
        Val(Ch, Num2, Code) 
      else begin 
        PosV3 := Pos(Ch, AllV); 
        Num2 := B[PosV3]; 
      end; 
      { -- Perform operation with 1st and 2nd num, place in var } 
      Op := A[I,4]; 
      Case Op of 
        '+': B[PosV] := Num1 + Num2; 
        '-': B[PosV] := Num1 - Num2; 
        '*': B[PosV] := Num1 * Num2; 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  117  

        '/': B[PosV] := Num1 div Num2; 
      end; 
    end; 
  end;  { -- for I } 
  { -- Display the variables in order of appearance with values } 
  for I := 1 to Length(AllV) do 
    Writeln (Copy(AllV, I, 1), '=', B[I]); 
end. 
 



118  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{3.7} 
program Thr7T95; 
{ -- This program finds three 3-digit primes having digits 1-9. } 
  var 
    A:           Array[1..200] of LongInt; 
    Digits:      String[9]; 
    Prime, Good: Boolean; 
    I, J, K, L, H, T, One, P, Sum, PNum: Integer; 
begin      { -- Generate primes into A[] } 
  P := 0; I := 101; 
  repeat 
    J := 3;  Prime := True; 
    while (J <= Sqrt(I)) and Prime do begin 
      if I mod J = 0 then Prime := False; 
      J := J + 2; 
    end; 
    if prime then begin 
      { -- Ensure that Digits are unique and not 0 } 
      H := I div 100;  T := (I - H * 100) div 10; 
      One := I - H * 100 - T * 10; 
      if (T > 0) and (H <> T) and (T <> One) and (H <> One) then 
        begin  Inc(P);  A[P] := I;  end; 
    end; 
    Inc(I, 2); 
  until I > 997; 
  { -- Add the different combinations of 3 primes } 
  for I := 1 to P - 2 do 
    for J := I + 1 to P - 1 do 
      for K := J + 1 to P do begin 
        Sum := A[I] + A[J] + A[K]; 
        { -- Check if Sum has 4 digits in ascending order } 
        if Sum >= 1234 then begin 
          Str(Sum, Digits);  Good := True;  L := 1; 
          repeat 
            if Digits[L] >= Digits[L+1] then Good := False; 
            Inc(L); 
          until (L = 4) or not Good; 
          { -- Check all 3-digit primes for digits 1 through 9 } 
          if Good then begin 
            Str((((A[I] * 1000 + A[J]) * 1000) + A[K]), Digits); 
            L := 1; 
            while (L <= 9) and Good do begin 
              if Pos(Chr(48+L), Digits) = 0 then Good := False; 
 
              Inc(L); 
            end; 
            if Good then begin 
              Writeln (A[I],' + ',A[J],' + ',A[K],' = ', Sum); 
              Inc(PNum);  If PNum = 7 then Exit; 
            end; 
          end; 
        end; 
      end;  { -- for K } 
end. 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  119  

{3.8} 
program Thr8T95; 
{ -- This program will display time in MM:SS in block letters. } 
uses Crt; 
  const 
    B: Array[1..5] of String[60] = ( 
    '****     *  ****  ****  *  *  ****  *     ****  ****  ****', 
    '*  *     *     *     *  *  *  *     *        *  *  *  *  *', 
    '*  *     *  ****  ****  ****  ****  ****     *  ****  ****', 
    '*  *     *  *        *     *     *  *  *     *  *  *     *', 
    '****     *  ****  ****     *  ****  ****     *  ****     *' 
    ); 
    { -- Maximum units for MM:SS } 
    Max: Array[1..4] of Byte = (6, 10, 6, 10); 
    { -- Columns to start blocks } 
    Col: Array[1..4] of Byte = (1, 7, 18, 24); 
  var 
    I, J: Byte; 
    Dig:  Array[0..9] of Byte; 
    A:    Array[1..5,0..9] of String[4]; 
    MMSS: String[5]; 
    Code: Integer; 
    Ch:   String[1]; 
 
begin 
  for I := 1 to 5 do 
    for J := 0 to 10 do 
      A[I,J] := Copy(B[I], J * 6 + 1, 4); 
  Write ('Enter MM:SS: '); Readln (MMSS); 
  for I := 1 to 4 do 
    if I < 3 then 
      Val(Copy(MMSS, I, 1), Dig[I], Code) 
    else 
      Val(Copy(MMSS, I+1, 1), Dig[I], Code); 
 
  ClrScr; 
  GotoXY (14,2); Write('*');  GotoXY (14,4);  Write('*'); 
  Ch := ''; 
  repeat 
    for I := 1 to 4 do 
      for J := 1 to 5 do begin 
        GotoXY (Col[I], J);  Write (A[J, Dig[I]]); 
      end; 
    Inc(Dig[4]); 
    for J := 4 downto 1 do 
      if Dig[J] = Max[J] then begin 
        Inc(Dig[J-1]);  Dig[J] := 0; 
      end; 
    Delay(1000); 
    if KeyPressed then Ch := ReadKey; 
  until Ch <> '' 
end. 
 



120  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  
 

{3.9} 
program Thr9T95; 
{ -- This program will calculate the area of a polygon room. } 
  var 
    I, L, Sides, Code, Sum, Area: Integer; 
    Mov:  String[3]; 
    Dir:  Array[1..10] of String[1]; 
    Dist: Array[1..10] of Integer; 
 
begin 
  Write ('Enter number of sides: ');  Readln (Sides); 
  for I := 1 to Sides do begin 
    Write ('Enter movement: ');  Readln (Mov); 
    Dir[I] := Copy(Mov, 1, 1); 
    L := Length(Mov); 
    Mov := Copy(Mov, 2, L - 1); 
    Val(Mov, Dist[I], Code); 
    { -- Subtract Down and Left directions } 
    if (Dir[I] = 'D') or (Dir[I] = 'L') then 
      Dist[I] := -Dist[I]; 
  end; 
  { -- Multiply length by width to obtain rectangle area, } 
  { -- then add or subtract area from overall area. } 
  I := 1;  Sum := 0;  Area := 0; 
  repeat 
    Sum := Sum + Dist[I]; 
    Area := Area + (Sum * Dist[I+1]); 
    Inc(I, 2); 
  until (I > Sides); 
  Writeln ('AREA = ', Abs(Area), ' SQUARE FEET'); 
end. 
 
 
 
 
{3.10} 
program Thr10T95; 
{ -- This program displays versions of libraries on a graph. } 
uses Crt; 
  var 
    Vers, FirstWk, FWkDisp, WkNum, LWkDisp, LastWk, Backup, 
    I, Min, Max, TestArea, FirstPreWk, LastPreWk: Integer; 
 
begin 
  Write ('Enter version #: ');  Readln (Vers); 
  Write ('Enter first week in test: ');  Readln (FirstWk); 
  Write ('Enter first week to display, # of weeks: '); 
  Readln (FWKDisp, WkNum); 
  ClrScr; 
  LWkDisp := FWkDisp + WkNum - 1; 
  { -- Display week #s at top (units first, then tens) } 
  Write (' ': 9); 
  for I := FWkDisp to LWkDisp do  Write (I div 10); 
  Writeln;  Write (' ': 9); 



 FHSCC '95 PASCAL PROGRAM SOLUTIONS  121  

  for I := FWkDisp to LWkDisp do  Write (I mod 10); 
  Writeln;  Writeln; 
  LastWk := FirstWk + 17; 
  { -- Compute # of versions to backup from Vers input } 
  Backup := (LastWk - FWkDisp) div 6; 
  Vers := Vers - Backup; 
  FirstWk := FirstWk - 6 * Backup; 
  LastWk  := LastWk  - 6 * Backup; 
  repeat 
    { -- Display Version and indent } 
    Write ('R1V');  if Vers < 10 then Write ('0'); 
    Write(Vers, 'L01 '); 
    if FWkDisp <= FirstWk then begin 
      Min := FirstWk; 
      Write (' ': FirstWk - FWkDisp); end 
    else 
      Min := FWkDisp; 
    if LWkDisp >= LastWk then Max := LastWk else Max := LWkDisp; 
    { -- Display TestArea of 1 if Vers even, 2 if odd; P = Prod } 
    TestArea := (Vers mod 2) + 1; 
    for I := Min to Max do 
      if I < FirstWk + 12 then 
        Write (TestArea) 
      else 
        Write ('P'); 
    Writeln; 
    { -- Display Pre-Production Version } 
    FirstPreWk := FirstWk + 5;  LastPreWk := FirstWk + 10; 
    if (LastPreWk >= FWkDisp) and (FirstPreWk <= LWkDisp) then 
      begin 
        Write ('R1V');  if Vers - 1 < 10 then Write ('0'); 
        Write (Vers - 1, 'L88 '); 
        if FirstPreWk > FWkDisp then begin 
          Min := FirstPreWk; 
 
          Write (' ': FirstPreWk - FWkDisp); end 
        else 
          Min := FWkDisp; 
        if LWkDisp >= LastPreWk then 
          Max := LastPreWk 
        else 
          Max := LWkDisp; 
        for I := 1 to Max - Min + 1 do Write ('*'); 
        Writeln; 
      end; { -- if } 
    FirstWk := FirstWk + 6;  LastWk := LastWk + 6; 
    Inc(Vers); 
  until FirstWk > LWkDisp; 
end. 
 



122  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{ -- FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '96 } 
{ -- PASCAL PROGRAM SOLUTIONS } 
 
 
{1.1} 
program One1T96; 
{ -- This program displays a phrase of the form FHSCC '##. } 
  var 
    Year: String[4]; 
 
begin 
  Write ('Enter year: ');  Readln (Year); 
  Writeln ('FHSCC ''', Copy(Year,3,2)); 
end. 
 
 
{1.2} 
program One2T96; 
{ -- This program tallies number of frequent flier miles. } 
  var 
    X, Y: Integer; 
 
begin 
  Write ('Enter X: ');  Readln (X); 
  Write ('Enter Y: ');  Readln (Y); 
  Writeln (X * (1300 + 1300 + 500) + (Y * 5)); 
end. 
 
 
{1.3} 
program One3T96; 
{ -- This program displays middle letter(s) of a word. } 
  var 
    Word: String[20]; 
    L, M: Integer; 
 
begin 
  Write ('Enter word: ');  Readln (Word); 
  L := Length(Word);  M := L div 2; 
  If (L mod 2) = 0 then Write (Copy(Word, M, 1)); 
  Writeln (Copy(Word, M+1, 1)); 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  123  

{1.4} 
program One4T96; 
{ -- This program displays area and perimeter of a rectangle. } 
  var 
    X1, Y1, X2, Y2, Area, Perim: Integer; 
 
begin 
  Write ('Enter coordinate 1: ');  Readln (X1, Y1); 
  Write ('Enter coordinate 2: ');  Readln (X2, Y2); 
  Area  := Abs((X1 - X2) * (Y1 - Y2)); 
  Perim := (Abs(X1 - X2) + Abs(Y1 - Y2)) * 2; 
  Writeln ('AREA = ', Area); 
  Writeln ('PERIMETER = ', Perim); 
end. 
 
 
{1.5} 
program One5T96; 
{ -- This program code-breaks an encrypted secret message. } 
  var 
    E: String[40]; 
    M: Char; 
    I: Integer; 
 
begin 
  Write ('Enter encryption: ');  Readln (E); 
  for I := 1 to Length(E) do begin 
    M := E[I]; 
    if M = ' ' then 
      Write(M) 
    else 
      Write (Chr( Ord('Z') - Ord(M) + Ord('A') )); 
  end; 
  Writeln; 
end. 
 
 
{1.6} 
program One6T96; 
{ -- This program displays number of floors elevator touches. } 
  var 
    Floor, Total, Max, LastFloor: Integer; 
 
begin 
  repeat 
    Write ('Enter floor: ');  Readln (Floor); 
    Total := Total + Abs(Floor - LastFloor); 
    if Floor > Max then Max := Floor; 
    LastFloor := Floor; 
  until (Floor = 0); 
  { -- 1 is added for the starting ground floor } 
  Writeln ('TOTAL FLOORS TOUCHED = ', Total + 1); 
  Writeln ('UNIQUE FLOORS TOUCHED = ', Max + 1); 
end. 



124  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{1.7} 
program One7T96; 
{ -- This program displays a person's ratios for buying a house.} 
  var 
    Loan, Debts, Income, Ratio1, Ratio2: Real; 
 
begin 
  Write ('Enter amount of loan: ');   Readln (Loan); 
  Write ('Enter amount of debts: ');  Readln (Debts); 
  Write ('Enter amount of income: '); Readln (Income); 
  Ratio1 := (Loan / Income) * 100; 
  Ratio2 := ((Loan + Debts) / Income) * 100; 
  Writeln ('RATIOS = ', Ratio1: 4:1, '% / ', Ratio2: 4:1, '%'); 
  Write   ('DOES '); 
  if (Ratio1 > 33) or (Ratio2 > 38) then Write ('NOT '); 
  Writeln ('QUALIFY'); 
end. 
 
 
{1.8} 
program One8T96; 
{ -- This program will convert numbers to English or Spanish.} 
  const 
    N: Array [1..20] of String[6] = ('ONE','TWO','THREE', 
    'FOUR','FIVE','SIX','SEVEN','EIGHT','NINE','TEN', 
    'UNO','DOS','TRES','CUATRO','CINCO','SEIS','SIETE', 
    'OCHO','NUEVE','DIEZ'); 
  var 
    Lang:   Char; 
    Num, I: Byte; 
 
begin 
  Write ('Enter E or S: ');  Readln (Lang); 
  Write ('Enter number: ' ); Readln (Num); 
  if Lang = 'S' then I := 10 else I := 0; 
  Writeln (N[I + Num]); 
end. 
 
{1.9} 
program One9T96; 
{ -- This program forms a cross from word(s). } 
  var 
    W: String[20]; 
    I, L, M: Byte; 
 
begin 
  Write ('Enter word(s): ');  Readln (W); 
  L := Length(W);  M := (L div 2) + 1; 
  for I := 1 to L do 
    If I <> M then 
      Writeln (' ': M - 1, Copy(W, I, 1)) 
    else 
      Writeln (W); 
end. 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  125  

{1.10} 
program One10T96; 
{ -- This program simulates the PRICE IS RIGHT game. } 
  var 
    Price, Min, I, Dif, Index: Integer; 
    A:     Array[1..4] of Integer; 
 
begin 
  Write ('Enter actual price: ');  Readln (Price); 
  Write ('Enter guesses A, B, C, D: '); 
  Readln (A[1], A[2], A[3], A[4]); 
  Min := 32000; 
  for I := 1 to 4 do 
    if A[I] <= Price then begin 
      Dif := Price - A[I]; 
      if Dif < Min then begin 
        Min := Dif;  Index := I; 
      end; 
    end; 
  if Index > 0 then 
    Writeln ('PERSON ', Copy ('ABCD', Index, 1)) 
  else 
    Writeln ('EVERYONE IS OVER'); 
end. 



126  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{2.1} 
program Two1T96; 
{ -- This program will emulate random dart throws. } 
  const 
    S: Array[1..7] of Byte = (0,2,4,5,10,20,50); 
  var 
    X, Throw, Total: Byte; 
 
begin 
  Randomize;  Throw := 0; 
  repeat 
    X := Random(7) + 1;  Inc(Throw); 
    Write(S[X]); 
    Inc(Total, S[X]); 
    If Total < 100 then Write (','); 
  until (Total >= 100); 
  Writeln; 
  Writeln (Throw, ' THROWS ACHIEVED A SCORE OF ', Total); 
  Writeln; 
end. 
 
 
{2.2} 
program Two2T96; 
{ -- This program compresses information to save space. } 
  var 
    S:      String[80]; 
    I, Ast: Byte; 
    Md:     Char; 
 
begin 
  Write ('Enter string: ');  Readln (S); 
  Ast := 0; 
  for I := 1 to Length(S) do begin 
    Md := S[I]; 
    if Md <> '*' then 
      begin 
        if Ast > 0 then 
          begin 
            if Ast = 1 then 
              Write ('*') 
            else 
              Write (Ast); 
            Ast := 0; 
          end; 
        Write(Md); 
      end 
    else 
      Inc(Ast) 
  end;  { -- for I } 
  Writeln; 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  127  

{2.3} 
program Two3T96; 
{ -- This program finds 2 numbers to add to the set 1,3,8. } 
  var 
    A:            Array[1..5] of Integer; 
    I, J, Num, N: Integer; 
    Found:        Boolean; 
 
begin 
  A[1] := 1; A[2] := 3; A[3] := 8;  N := 3;  I := 0; 
  for I := 0 to 999 do begin 
    Found := True; 
    for J := 1 to N do begin 
      Num := A[J] * I + 1; 
      if Sqrt(Num) - Trunc(Sqrt(Num + 0.0001)) > 0.0001 then 
        Found := False; 
    end; 
    if Found then begin 
      Writeln (I);  Inc(N);  A[N] := I;  if N = 5 then Exit; 
    end; 
  end; 
end. 
 
 
{2.4} 
program Two4T96; 
{ -- This program displays the LCM of the first N integers. } 
  var 
    A:       Array[1..31] of Integer; 
    I, J, N: Integer; 
    Prod:    Real; 
 
begin 
  Write ('Enter N: ');  Readln (N); 
  for I := 2 to N do  A[I] := I; 
  { -- Produce all the necessary prime factors. } 
  for I := 2 to N do 
    for J := I + 1 to N do 
      if (A[J] Mod A[I]) = 0 then A[J] := A[J] div A[I]; 
 
  Prod := 1; 
  For I := 2 to N do 
    Prod := Prod * A[I]; 
 
  Writeln (Prod: 13:0); 
end. 
 



128  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{2.5} 
program Two5T96; 
{ -- This program will calculate the fractional value. } 
  var 
    Word:    String[3]; 
    A:       Array[1..3] of Integer; 
    I, N, D: Integer; 
 
begin 
  Write ('Enter word: ');  Readln (Word); 
  for I := 1 to 3 do 
    A[I] := Ord(Word[I]) - Ord('A') + 1; 
 
  N := A[1] * A[2] + A[2] * A[3] + A[1] * A[3]; 
  D := A[1] * A[2] * A[3]; 
  for I := D downto 1 do 
    if (N mod I = 0) and (D mod I = 0) then begin 
      Writeln (N div I, '/', D div I);  Exit 
    end; 
end. 
 
 
{2.6} 
program Two6T96; 
{ -- This program displays the Nth prime in Fibonacci sequence. } 
  var 
    F:             Array[1..99] of LongInt; 
    I, N, J, PNum: Integer; 
    Prime:         Boolean; 
 
begin 
  F[1] := 1;  F[2] := 1;  F[3] := 2;  PNum := 1;  I := 3; 
  Write ('Enter N: ');  Readln (N); 
  while (PNum < N) do begin 
    Inc(I); 
    F[I] := F[I-1] + F[I-2];  Prime := True; 
    { -- Check if Fibonacci # is prime (not divis by 2 or odd#) } 
    if (F[I] Mod 2 = 0) then Prime := False; 
    if Prime then begin 
      for J := 3 to Trunc(Sqrt(F[I])) do 
        if (F[I] mod J = 0) then Prime := False; 
      if Prime then Inc(PNum); 
    end; 
  end; 
  Writeln(F[I]); 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  129  

{2.7} 
program Two7T96; 
{ -- This program sorts phone bills by zip code and phone #. } 
  var 
    P, Z, PZ: Array[1..8] of LongInt; 
    X:        LongInt; 
    N, I, J:  Integer; 
 
begin 
  N := 0; 
  repeat 
    Inc(N); 
    Write ('Enter phone #, zip: ');  Readln (P[N], Z[N]); 
    PZ[N] := Z[N] * 10000 + P[N]; 
  until (P[N] = 0) and (Z[N] = 0); 
  Dec(N); 
  for I := 1 to N - 1 do 
    for J := I + 1 to N do 
      if PZ[I] > PZ[J] then begin 
        X := PZ[I];  PZ[I] := PZ[J];  PZ[J] := X; 
        X := P[I];  P[I] := P[J];  P[J] := X; 
        X := Z[I];  Z[I] := Z[J];  Z[J] := X; 
      end; 
  for I := 1 to N do  Writeln (P[I]); 
end. 
 
 
{2.8} 
program Two8T96; 
{ -- This program will display number of runs of letters. } 
  var 
    Let:          String[80]; 
    Ch:           Char; 
    I, H1, H2:    Integer; 
    Half1, Half2: Boolean; 
 
begin 
  Write ('Enter letters: ');  Readln (Let); 
  Half1 := False;  Half2 := False; 
  for I := 1 to Length(Let) do begin 
    Ch := Let[I]; 
    if Pos(Ch, 'ABCDEFGHIJKLM') > 0 then begin 
      if Half2 then begin 
        Inc(H2);  Half2 := False; 
      end; 
      Half1 := True; 
      end 
    else begin 
      if Half1 then begin 
        Inc(H1);  Half1 := False; 
      end; 
      Half2 := True; 
    end; 
  end; 
  if Half1 then Inc(H1); 



130  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

  if Half2 then Inc(H2); 
  Writeln ('RUNS IN 1ST HALF = ', H1); 
  Writeln ('RUNS IN 2ND HALF = ', H2); 
end. 
 
 
 
{2.9} 
program Two9T96; 
{ -- This program reverses the order of letters in each word. } 
  var 
    S:       String[80]; 
    Md:      Char; 
    I, J, L: Integer; 
    W:       String[20]; 
    Pal:     Boolean; 
 
begin 
  Write ('Enter string: ');  Readln (S);  S := S + ' '; 
  for I := 1 to Length(S) do begin 
    Md := S[I]; 
    if Md = ' ' then begin 
      L := Length(W);  Pal := True; 
      for J := 1 to L div 2 do 
        if Copy(W, J, 1) <> Copy (W, L-J+1, 1) then Pal := False; 
      if Pal then 
        for J := 1 to Length(W) do  Write('?') 
      else 
        for J := L downto 1 do  Write(Copy(W,J,1)); 
      Write (' ');  W := ''; 
      end 
    else 
      W := W + Md; 
  end; 
  Writeln; 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  131  

{2.10} 
program Two10T96; 
{ -- This program determines day of week for a given date. } 
  const 
    MonNum: Array[1..12] of Byte = (1,4,4,0,2,5,0,3,6,1,4,6); 
    D:      Array[1..7]  of String[9] = ('SATURDAY', 
            'SUNDAY', 'MONDAY', 'TUESDAY', 'WEDNESDAY', 
            'THURSDAY', 'FRIDAY'); 
  var 
    Month, Day, Year, Last2, Sum, R: Integer; 
    LeapYear: Boolean; 
 
begin 
  Write ('Enter month, day, year: ');  Readln (Month, Day, Year); 
  Last2 := Year mod 100; 
  Sum := Last2 + (Last2 div 4); 
  LeapYear := (Year Mod 4 = 0) and (Year mod 100 > 0); 
  LeapYear := LeapYear or (Year mod 400 = 0); 
  if (Month < 3) and LeapYear then 
    if (Month = 2) then Inc(Sum,3) else  {-- New Month Number } 
  else 
    Inc(Sum, MonNum[Month]); 
  Inc(Sum, Day); 
  Case Year of 
    1753..1799: Inc(Sum, 4); 
    1800..1899: Inc(Sum, 2); 
    2000..2099: Inc(Sum, 6); 
    2100..2199: Inc(Sum, 4); 
  end; 
  R := Sum mod 7; 
  Writeln (D[R+1]); 
end. 
 



132  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{3.1} 
program Thr1T96; 
{ -- This program displays the appearance of 3-dimensional book.} 
uses Crt; 
  const 
    Spaces:        String[16] = '                '; 
  var 
    T1, T2:        String[17]; 
    Max, Dif, Row: Byte; 
 
begin 
  Write ('Enter title 1: ');  Readln (T1); 
  Write ('Enter title 2: ');  Readln (T2); 
  if Length(T1) > Length(T2) then 
    begin 
      Max := Length(T1);  Dif := (Max - Length(T2)) div 2; 
      T2 := Copy(Spaces, 1, Dif) + T2 + Copy(Spaces, 1, Dif + 1); 
    end 
  else 
    begin 
      Max := Length(T2);  Dif := (Max - Length(T1)) div 2; 
      T1 := Copy(Spaces, 1, Dif) + T1 + Copy(Spaces, 1, Dif + 1); 
    end; 
  ClrScr; 
  Writeln ('    /---/!'); 
  Writeln ('   /   / !'); 
  Writeln ('  /   /  !'); 
  Writeln (' /   /   !'); 
  Writeln ('!---!    !'); 
  for Row := 1 to Max do begin 
    Write ('!'); 
    Write (Copy (T2, Row, 1), ' '); 
    Write (Copy (T1, Row, 1), '!'); 
    if Row < Max - 3 then 
      Writeln (' ':4, '!') 
    else 
      Writeln (' ': Max - Row + 1, '/'); 
  end; 
  Writeln ('!---!/'); 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  133  

{3.2} 
program Thr2T96; 
{ -- This program produces a prime factors tree. } 
uses Crt; 
  var 
    P:                      Array[1..100] of Integer; 
    Num, Left, Right, Row, Pr, Dividend, L, R: Integer; 
 
begin 
  Write ('Enter number: ');  Readln (NUM); 
  ClrScr;  Row := 1;  Writeln (' ':5, Num); 
  {-- Position of / and \, determine length of Num } 
  Left := 5;  Right := Left + Trunc(Ln(Num) / Ln(10)) + 2; 
  repeat 
    { -- Find smallest prime that divides number } 
    if Num mod 2 = 0 then 
      Pr := 2 
    else begin 
      Pr := 1; 
      repeat 
        Inc(Pr, 2); 
      until (Num mod Pr = 0); 
    end; 
    Dividend := Num div Pr; 
    if Dividend > 1 then begin 
      Inc(Row); 
      GotoXY (Left, Row);   Write ('/'); 
      GotoXY (Right, Row);  Writeln ('\'); 
      L := Trunc(Ln(Pr) / Ln(10)); 
      R := Trunc(Ln(Dividend) / Ln(10)); 
      Inc(Row); 
      GotoXY (Left - L - 1, Row);  Write (Pr); 
      GotoXY (Right + 1, Row);     Writeln (Dividend); 
      Left := Right;  Right := Right + R + 2; 
    end; 
    Num := Dividend; 
  until Num = 1; 
end. 
 



134  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{3.3} 
program Thr3T96; 
{ -- This program simulates a "base four" calculator. } 
  var 
    Num:                Array[1..10] of String[6]; 
    Sym:                Array[1..10] of Char; 
    Ch:                 Char; 
    N:                  String[6]; 
    E:                  String[40]; 
    I, J, K, L, Dig, X: Byte; 
    B10, Total, Pow:    LongInt; 
 
begin 
  Write ('Enter base 4 expression: ');  Readln (E); 
  E := E + '+';  Sym[1] := '+'; 
  for I := 1 to Length(E) do begin 
    Ch := E[I]; 
    if (Ch = '+') or (Ch = '-') then 
      begin 
        Inc(J);  Num[J] := N;  Sym[J+1] := Ch;  N := ''; 
      end 
    else 
      N := N + Ch; 
  end; 
  { -- Convert base 4 numbers to base 10 and perform arithmetic } 
  for I := 1 to J do begin 
    L := Length(Num[I]);  B10 := 0; 
    for J := 1 to L do begin 
      Dig := Ord(Num[I,J]) - Ord('0'); 
      Pow := 1; 
      for K := 1 to (L - J) do Pow := Pow * 4; 
      B10 := B10 + Dig * Pow; 
    end; 
    if (Sym[I] = '-') then B10 := (-B10); 
    Inc(Total, B10); 
  end; 
  { -- Convert base 10 number to base 4 } 
  if Total < 0 then begin 
    Write ('-');  Total := (-Total); 
  end; 
  J := Trunc(Ln(Total) / Ln(4) + 0.001); 
  for I := J downto 0 do begin 
    Pow := 1; 
    for K := 1 to I do Pow := Pow * 4; 
    X := Total div Pow; 
    Write (X); 
    Total := Total - X * Pow; 
  end; 
  Writeln; 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  135  

{3.4} 
program Thr4T96; 
{ -- This program calculates contractor's pay=time * rate. } 
  var 
    Rate, Time: Real; 
    St, Fi:     String[7]; 
    FiHour, StHour, StMin, FiMin, Code: Integer; 
 
begin 
  Write ('Enter pay/hour: ');     Readln (Rate); 
  Write ('Enter start time: ');   Readln (St); 
  Write ('Enter finish time: ');  Readln (Fi); 
  Val(Copy(St,1,2), StHour, Code); 
  Val(Copy(Fi,1,2), FiHour, Code); 
  Val(Copy(St,4,2), StMin,  Code); 
  Val(Copy(Fi,4,2), FiMin,  Code); 
  { -- Adjust for 12AM and times from 1PM - 11PM } 
  if StHour = 12 then 
    if Copy(St, 6, 2) = 'AM' then Dec(StHour, 12) else 
  else 
    if Copy(St, 6, 2) = 'PM' then Inc(StHour, 12); 
 
  if FiHour = 12 then 
    if Copy(Fi, 6, 2) = 'AM' then Dec(FiHour, 12) else 
  else 
    if Copy(Fi, 6, 2) = 'PM' then Inc(FiHour, 12); 
  {-- Adjust for a late starting time and early morning finish.} 
  if StHour > FiHour then Inc(FiHour, 24); 
  {-- Compute difference in time (finish - start) } 
  Time := (FiHour - StHour) + (FiMin - StMin) / 60; 
  {-- If more than half of time is outside normal hours (7AM-5PM) 
   -- then add a shift differential of 10% to rate. } 
  if ((7 - StHour) + (0 - StMin) / 60) >= (Time / 2) then 
    { -- More than half of time is worked before 7AM } 
    Rate := Rate * 1.1; 
  if ((FiHour - 17) + (FiMin) / 60) >= (Time / 2) then 
    { -- More than half of time is worked after 5PM } 
    Rate := Rate * 1.1; 
  Writeln ('$', Time * Rate: 6:2); 
end. 
 



136  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{3.5} 
program Thr5T96; 
{ -- This program displays the button that leads to the others. } 
  var 
    I, J, K, L, R, C, Press:   Byte; 
    N:    Array[1..4, 1..4] of Byte; 
    D:    Array[1..4, 1..4] of Char; 
    A:    Array[1..4, 1..4] of Boolean; 
    Row:  String[12]; 
    Code: Integer; 
    Good: Boolean; 
 
begin 
  for I := 1 to 4 do begin 
    Write ('Enter row: ');  Readln (Row); 
    for J := 1 to 4 do begin 
      Val(Row[J*3-2], N[I,J], Code); 
      D[I,J] := Row[J*3-1]; 
    end; 
  end; 
  for I := 1 to 4 do 
    for J := 1 to 4 do begin 
      for K := 1 to 4 do 
        for L := 1 to 4 do  A[K, L] := False; 
      R := I;  C := J;  A[R, C] := True; 
      Press := 1;  Good := True; 
      repeat 
        Case D[R,C] of 
          'D': Inc(R, N[R,C]); 
          'U': Dec(R, N[R,C]); 
          'L': Dec(C, N[R,C]); 
          'R': Inc(C, N[R,C]); 
        end; 
        if A[R, C] then 
          Good := False 
        else begin 
          A[R,C] := True;  Inc(Press); 
        end; 
      until (not Good) or (Press = 16); 
      if Press = 16 then begin 
        Writeln ('FIRST BUTTON = ', N[I,J], D[I,J]); 
        Writeln ('AT ROW = ', I, ', COL = ', J); 
        Exit 
      end; 
    end;  { -- for J } 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  137  

{3.6} 
program Thr6T96; 
{ -- This program will generate odd size magic squares. } 
  var 
    N, First, Incr, X, Y, I, J, MagicNum: Integer; 
    A:             Array[1..13, 1..13] of Integer; 
 
begin 
  Write ('Enter order, first number, increment: '); 
  Readln (N, First, Incr); 
  X := 1;  Y := (N + 1) div 2;  A[X,Y] := First; 
  for I := 2 to N * N do begin 
    Dec(X);  Inc(Y); 
    if X = 0 then X := N; 
    if Y > N then Y := 1; 
    if A[X,Y] = 0 then 
      A[X,Y] := First + Incr * (I - 1) 
    else begin 
      Inc(X,2);  Dec(Y); 
      if X > N then Dec(X, N); 
      if Y = 0 then Y := N; 
      A[X,Y] := First + Incr * (I - 1); 
    end; 
  end; 
  { -- Display Magic Number and Square } 
  MagicNum := 0; 
  for I := 1 to N do  Inc(MagicNum, A[I,1]); 
  Writeln ('MAGIC NUMBER = ', MagicNum); 
  for I := 1 to N do begin 
    for J := 1 to N do 
      Write (A[I,J]: 4); 
    Writeln; 
  end; 
end. 
 



138  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{3.7} 
program Thr7T96; 
{ -- This program will generate 6x6 magic squares. } 
  const 
    R: Array[1..4] of Byte = (0, 1, 0, 1); 
    C: Array[1..4] of Byte = (0, 1, 1, 0); 
  var 
    N, First, Incr, X, Y, I, J: Integer; 
    FirstN, MagicNum, Sq, Temp: Integer; 
    A:             Array[1..3, 1..3] of Integer; 
    B:             Array[1..6, 1..6] of Integer; 
 
procedure Generate3x3; 
{ -- Generate a 3x3 magic square in A[1..3,1..3] } 
begin 
  for I := 1 to 3 do 
    for J := 1 to 3 do A[I,J] := 0; 
  N := 3; 
  X := 1;  Y := (N + 1) div 2;  A[X,Y] := First; 
  for I := 2 to N * N do begin 
    Dec(X);  Inc(Y); 
    if X = 0 then X := N; 
    if Y > N then Y := 1; 
    if A[X,Y] = 0 then 
      A[X,Y] := First + Incr * (I - 1) 
    else begin 
      Inc(X,2);  Dec(Y); 
      if X > N then Dec(X, N); 
      if Y = 0 then Y := N; 
      A[X,Y] := First + Incr * (I - 1); 
    end; 
  end; 
end; 
 
begin 
  Write ('Enter first number, increment: '); 
  Readln (FirstN, Incr); 
  { -- Four 3x3 squares are made for the 6x6 matrix B[] 
    -- upper-left, bottom-right, upper-right, bottom-left. } 
  for Sq := 0 to 3 do begin 
    First := FirstN + Sq * 9 * Incr; 
    Generate3x3; 
    for I := 1 to 3 do 
      for J := 1 to 3 do 
        B[R[Sq+1] * 3 + I, C[Sq+1] * 3 + J] := A[I,J]; 
  end; 
  { -- Transpose three cells } 
  Temp := B[1,1];  B[1,1] := B[4,1];  B[4,1] := Temp; 
  Temp := B[2,2];  B[2,2] := B[5,2];  B[5,2] := Temp; 
  Temp := B[3,1];  B[3,1] := B[6,1];  B[6,1] := Temp; 
  { -- Display Magic Number and 6x6 matrix } 
  MagicNum := 0; 
  for I := 1 to 6 do  Inc(MagicNum, B[I,1]); 
  Writeln ('MAGIC NUMBER = ', MagicNum); 
  for I := 1 to 6 do begin 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  139  

    for J := 1 to 6 do 
      Write (B[I,J]: 4); 
    Writeln; 
  end; 
end. 
 



140  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

{3.8} 
program Thr8T96; 
{ -- This program will display a pie graph. } 
uses Crt; 
  const 
    L:  Array [1..3] of Char = ('A', 'D', 'N'); 
    PI: Real = 3.1415926; 
  var 
    A:  Array[1..21, 1..21] of Byte; 
    P:  Array[1..3] of Byte; 
    I:  Real; 
    Ch: Char; 
    J, K, R, X, Y, S, Sum, LSum: Integer; 
 
begin 
  Write ('Enter 3 percentages: ');  Readln (P[1], P[2], P[3]); 
  ClrScr; 
  for J := 1 to 21 do 
    for K := 1 to 21 do 
      A[J, K] := 0; 
  { -- Draw Circle } 
  I := -PI / 2.0; 
  while I < 3 / 2 * PI do begin 
    X := Trunc(Cos(I) * 10);  Y := Trunc(Sin(I) * 10); 
    GotoXY (11 + X, 11 + Y);  Write ('*'); 
    A[11 + X, 11 + Y] := 1;  I := I + 0.1; 
  end; 
  { -- Draw 3 line segments from center } 
  Sum := 0; 
  for S := 0 to 2 do begin 
    Sum := Sum + P[S]; 
    I := -PI / 2 + 2 * PI * Sum / 100.0; 
    for R := 0 to 10 do begin 
      X := Trunc(Cos(I) * R);  Y := Trunc(Sin(I) * R); 
      GotoXY (11 + X, 11 + Y);  Write ('*'); 
      A[11 + X, 11 + Y] := 1; 
    end; 
  end; 
  Ch := ReadKey;  Sum := 0; 
  { -- fill regions with letters } 
  for S := 1 to 3 do begin 
    LSum := Sum;  Sum := Sum + P[S];  J := LSum; 
    while J < Sum do begin 
      I := -PI / 2 + 2 * PI * J / 100.0; 
      for R := 1 to 9 do begin 
        X := Trunc(Cos(I) * R);  Y := Trunc(Sin(I) * R); 
        if A[11 + X, 11 + Y] = 0 then begin 
          GotoXY (11 + X, 11 + Y);  Write (L[S]); 
        end; 
      end; 
      Inc(J); 
    end; 
  end; 
end. 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  141  

{3.9} 
program Thr9T96; 
{ -- This program produces a precedence of jobs to run. } 
  var 
    Num, I, J, K, L, DepLeft, UNum, P, St: Byte; 
    Job:                String[3]; 
    Dep:                String[6]; 
    U, U2, Jobs, NewU2: String[24]; 
    A, B:               Array[1..8] of String[3]; 
    Marked:             Array[1..8] of Boolean; 
    NoJob, ValidJob:    Boolean; 
 
 
begin 
  Write ('Enter number of dependencies: ');  Readln (Num); 
  U := ''; 
  for I := 1 to Num do begin 
    Write ('Enter dependency: ');  Readln (Dep); 
    Dep := Dep + ' '; 
    A[I] := Copy(Dep, 1, 3); 
    B[I] := Copy(Dep, 4, 3); 
    { -- Store unique jobs in string } 
    if Pos(A[I], U) = 0 then U := U + A[I]; 
    if Pos(B[I], U) = 0 then U := U + B[I]; 
  end; 
 { -- Since there is a unique order for all the jobs, 
   -- every job will have its successor somewhere in B[]. 
   -- 1) search all B[] for the only job missing. 
   -- 2) exclude all dependencies with this job in it. 
   -- 3) search all B[] for the next only job missing. 
   -- 4) repeat steps 2 and 3 until the final dependency is left.} 
  L := Length(U);  UNum := L div 3;  U2 := U; 
  DepLeft := Num;  Jobs := ''; 
  while DepLeft > 1 do begin 
    for I := 1 to Num do  Marked[I] := False; 
    for I := 1 to Num do begin 
      P := Pos(B[I], U2); 
      if P > 0 then Marked[ (P+2) div 3 ] := True; 
    end; 
    NoJob := True;  I := 0; 
    while NoJob and (I < UNum) do begin 
      Inc(I);  St := I * 3 - 2; 
      Job := Copy(U2, St, 3); 
      ValidJob := (Pos(Job, Jobs) = 0) and (Job <> '   '); 
      if ValidJob and not Marked[I] then begin 
        Jobs := Jobs + Job; 
        for K := 1 to Num do 
          if A[K] = Job then begin 
            A[K] := '*';  B[K] := '*'; 
            Dec(DepLeft); 
          end; 
        NewU2 := Copy(U2, 1, St-1) + '   '; 
        U2 := NewU2 + Copy(U2, St + 3, L - St - 2); 
        NoJob := False; 
      end; 



142  FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 1995 - 1996  

    end;  { -- while } 
  end;  { -- while } 
  { -- Last dependency is concatenated } 
  for I := 1 to Num do 
    if A[I] <> '*' then Jobs := Jobs + A[I] + B[I]; 
  Writeln ('JOBS MUST BE RUN IN THIS ORDER: ', Jobs); 
end. 
 



 FHSCC '96 PASCAL PROGRAM SOLUTIONS  143  

{3.10} 
program Thr10T96; 
{ -- This program finds a perfect square with digits 1-9. } 
  var 
    A, N, Num, Min, NumMin, NumMin2: LongInt; 
    I, B, Z, L, Code: Integer; 
    Digits:           String[9]; 
    Good:             Boolean; 
    Count:            Byte; 
 
procedure CheckDigits; 
{ -- Determine number of swaps made and store in count } 
var 
  D:          Array[1..9] of Byte; 
  I, J, Temp: Byte; 
 
begin 
  for I := 1 to 9 do  Val(Digits[I], D[I], Code); 
  Count := 0; 
  for I := 1 to 9 do 
    if D[I] <> I then begin 
      J := I + 1; 
      While (J < 9) and (D[J] <> I) do  Inc(J); 
      Temp := D[I];  D[I] := D[J];  D[J] := Temp; 
      Inc(Count); 
    end; 
end; 
 
{ -- Main program } 
begin 
  Min := 9; 
  for Num := 10001 to Trunc(Sqrt(987654321)) do begin 
    A := Num * Num; 
    Str(A, Digits); 
    Good := True;  L := 1; 
    while (L <= 9) and Good do begin 
      if Pos(Chr(48+L), Digits) = 0 then Good := False; 
      Inc(L); 
    end; 
    if Good then begin  {-- Found perfect square w/unique digits} 
      CheckDigits; 
      if Count < Min then begin 
        Min := Count;  NumMin := A;  NumMin2 := Num; 
      end; 
    end; 
  end; 
  { -- Display the perfect square needing least num of swaps. } 
  Str(NumMin, Digits); 
  Writeln (Digits, ' IS THE SQUARE OF ', NumMin2); 
  Write   ('AND WAS FORMED BY EXCHANGING ', Min); 
  Writeln (' PAIRS OF DIGITS'); 
end. 


