FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '85 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program will simulate a Last-In-First-Out stack.
INPUT "Enter command:"; A$
WHILE A$ <> "QUIT"
    IF A$ = "ADD" THEN S = S + 1: INPUT "Enter number:"; A(S)
    IF A$ = "TAKE" THEN PRINT A(S): S = S - 1
    INPUT "Enter command:"; A$
WEND
```

'1. 2
' This program will determine which number was erased.
INPUT "Enter N, AV: "; N, AV
FOR I $=1 \mathrm{TO} \mathrm{N}: S=S+I: N E X T \mathrm{I}$
FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{N}$
$T=S-I$
$\operatorname{IF} \operatorname{ABS}((T /(N-1))-A V)<.0001$ THEN
PRINT "NUMBER ERASED WAS"; I: END
END IF
NEXT I
'1. 3
, This program will print the square root of N.
INPUT "Enter N, D: "; N, D: Q = SQR (N)
$S=\operatorname{INT}\left(Q / 10^{\wedge} \mathrm{D}+.5\right) * 10 \wedge \mathrm{D}$
A\$ $=\operatorname{MID} \$(S T R \$(S), 2)$
FOR I $=1$ TO LEN (A\$)
$T=T+\operatorname{VAL}(\operatorname{MID}(A \$, I, 1))$
NEXT I
PRINT USING "S=\#\#\#\#.\#\#\#\#"; S
PRINT "SUM="; LTRIM\$ (STR\$ (T))
'1. 4
' This program will simulate a time dial.
CLS : Y = 1985
$J=3000 \quad$ 'About one second on a 386-computer
WHILE Y <= 2345
LOCATE 12, 38: PRINT Y
IF J > 30 THEN J = J - 30
FOR K = 1 TO J: NEXT K
$Y=Y+1$
WEND

```
'1.5
' This program will determine # of tennis games and byes.
INPUT "Enter N: "; N
WHILE N > 1
    G = INT(N / 2)
    IF G * 2 = N THEN B = 0 ELSE B = 1
    R=R + I
    PRINT USING "ROUND # ## GAMES"; R; G;
    IF B = 1 THEN PRINT " 1 BYE" ELSE PRINT
    TG = TG + G: BY = BY + B:N = G + B
WEND
PRINT USING "TOTAL ## GAMES ## BYES"; TG; BY
'1.6
' This program will find smallest, largest, and sum of #s.
INPUT "Enter N, M: "; N, M
IF M > 999 THEN M = 999
IF N < 100 THEN N = 100
FOR I = N TO M
    NUM = I
    H = INT (NUM / 100): NUM = NUM - H * 100
    T = INT (NUM / 10): U = NUM - T * 10
    IF NOT (H=O OR T = O OR U = O OR H=T OR T = UOR H=U) THEN
        S = S + I: L = I: IF S = I THEN PRINT "SMALLEST ="; S
    END IF
NEXT I
PRINT "LARGEST ="; L
PRINT "SUM ="; S
'1.7
' This program will print a bill for Bob's Cycle shop.
INPUT "Enter Customer name: "; N$
INPUT "Enter part#: "; P$
INPUT "Enter labor time: "; LT
WHILE P$ <> A$: READ A$, B$, C: WEND
' Print Invoice
PRINT
PRINT "CUSTOMER NAME: "; N$
PRINT "PART #: "; P$
PRINT "DESCRIPTION: "; B$
PRINT USING "PART COST: ###.##"; C
LC = LT * 10
PRINT USING "LABOR COST: ###.##"; LC
TAX = C * . 05: TAX = INT(TAX * 100 + .5) / 100
PRINT USING "5% TAX: ###.##"; TAX
TOT = LC + C + TAX
PRINT USING "TOTAL: ###.##"; INT(TOT * 100 + .5) / 100
```

```
DATA S193,10 INCH SPROCKET,13.95
DATA S867,30 INCH CHAIN,27.50
DATA F234,BLITZ MAG FRAME,119.00
DATA S445,COMPUTCYCLE COMPUTER,33.95
DATA C492,JET BRAKE SET,29.98
DATA J273,27 INCH WHEEL,32.00
DATA T100,27x1 INCH TIRE TUBE,12.50
'1.8
' This program will display labels alphabetically.
'
INPUT "Enter # of lines on label:"; H
S = 1: READ A$ (S), B$ (S)
WHILE A$(S) <> "*END*"
    L = LEN(A$ (S)): I = 1
    WHILE MID$(A$(S), I, 1) <> " ": I = I + 1: WEND
    R$ = RIGHT$ (A$ (S), L - I): L$ = LEFT$ (A$ (S), I)
    C$(S) = R$ + ", " + L$
    S = S + 1
    READ A$(S), B$(S)
WEND
S = S - 1
FOR I = 1 TO S - 1
    FOR J = I + 1 TO S
        IF C$(I) > C$(J) THEN
            X$ = C$(I): C$(I) = C$(J): C$(J) = X$
            X$ = B$(I): B$(I) = B$(J): B$(J) = X$
        END IF
    NEXT J
NEXT I
FOR I = 1 TO S
    PRINT : PRINT C$(I): PRINT B$(I)
    FOR J = 1 TO H - 3: PRINT : NEXT J
NEXT I
DATA LISA SPINXS,987-6543
DATA BOB SIMON,123-4455
DATA BILL SIMON,123-4567
DATA HARRY TROUTMAN,876-2174
DATA HARRY PARKER,222-3333
DATA *END*,0
```

'1.9
' This program will guess secret letter in 5×5 matrix.
'
CLS : DIM A(25): $S=11$
RANDOMIZE TIMER
FOR I = 1 TO 5 FOR J = 1 TO 5

DO: X = INT(RND(3) * 25): LOOP UNTIL A(X) = 0
B\$ (I, J) = CHR\$ (X + 65) : LOCATE I, 13 + J * 2: PRINT B\$(I, J) A $(\mathrm{X})=1$ NEXT J
NEXT I
LOCATE 2, 30: PRINT "SCORE="; S
I = 0
WHILE A\$ <> "Y"
$I=I+1$
LOCATE 10, 10: PRINT "IS THE LETTER IN ROW"; I; : INPUT A\$
LOCATE 2, 30: S = S - 1: PRINT "SCORE="; S: LOCATE 10, 10
WEND: A\$ = "": J = 0
WHILE A\$ <> "Y"
$J=J+1$
LOCATE 12, 10: PRINT "IS THE LETTER IN COL"; J; : INPUT A\$
LOCATE 2, 30: S = S - 1: PRINT "SCORE="; S
WEND
IF S > 0 THEN LOCATE 14, 1: PRINT "YOUR LETTER IS "; B\$(I, J)
'1.10
' This program will display squares relative to cursor and \#.
' Key movements: I-up, J-left, K-right, M-down
'
CLS : $R=5: C=5$
WHILE VAL (A\$) $=0$
LOCATE R, C: PRINT "\#": A\$ = "" WHILE A\$ = "": A\$ = INKEY\$: WEND IF VAL (A\$) $=0$ THEN

LOCATE R, C: PRINT " "
IF A\$ = "I" THEN R = R - 1
IF A\$ = "M" THEN R = R + 1
IF A\$ = "J" THEN C = C - 1 IF A\$ = "K" THEN C = C + 1 END IF
WEND
$\mathrm{X}=\mathrm{VAL}(\mathrm{A} \$)$
IF $\mathrm{X}=1$ THEN $\mathrm{A}=1: \mathrm{B}=0$
IF $X=2$ THEN $A=1: B=-1$
IF $X=3$ THEN $A=-1: B=-1$
IF $\mathrm{X}=4$ THEN $\mathrm{A}=-1: \mathrm{B}=0$
IF R + 5 * A > 24 OR R + 5 * A < 1 THEN
LOCATE 21, 1: PRINT "OFF THE SCREEN": END
END IF
IF C + 9 * B > 80 OR C + 9 * B < 1 THEN
LOCATE 21, 1: PRINT "OFF THE SCREEN": END
END IF
LOCATE $\mathrm{R}+1$ * A, $\mathrm{C}+8$ * $\mathrm{B}: \operatorname{PRINT}$ "*********"
LOCATE R + 2 * A, C + 8 * B: PRINT "* *"
LOCATE $\mathrm{R}+3$ * $\mathrm{A}, \mathrm{C}+8$ * B : PRINT USING "* \# *"; X
LOCATE R + 4 * A, C + 8 * B: PRINT "* *"
LOCATE $\mathrm{R}+5$ * $\mathrm{A}, \mathrm{C}+8$ * $\mathrm{B}: \operatorname{PRINT}$ "*********"

```
'2.1
', This program will outline screen with random letters.
'
RANDOMIZE TIMER
DO
    CLS
    FOR I = 1 TO 11
        X = INT(RND * 26): A$ = CHR$ (65 + X)
        LOCATE I, I
        FOR J = I TO 80 - I: PRINT A$; : NEXT J
        FOR J = I + 1 TO 23 - I
            LOCATE J, I: PRINT A$: LOCATE J, 80 - I: PRINT A$
        NEXT J
        LOCATE 23 - I, I
        FOR J = I TO 80 - I: PRINT A$; : NEXT J
        B$ = "": WHILE B$ = "": B$ = INKEY$: WEND
    NEXT I
LOOP UNTIL B$ = CHR$(27)
'2.2
' This program will print the longest sequence of letters.
INPUT "Enter N: "; N: DIM A$(N)
FOR I = 1 TO N: INPUT "Enter letter: "; A$(I): NEXT I
I = N: FOUND = 0
WHILE (I >= 2) AND NOT FOUND
    FOR J = 1 TO N - I + 1
        ONE = -1
        FOR K = 0 TO I - 2
            IF A$(J + K) >= A$ (J + K + 1) THEN ONE = 0
        NEXT K
        IF ONE THEN
            FOR K = O TO I - 1: PRINT A$ (J + K); " "; : NEXT K
            PRINT : FOUND = -1
        END IF
        NEXT J
        I = I - 1
WEND
```

```
'2. 3
' This program will change the margins of a given text.
INPUT "Enter text: "; A$: A$ = A$ + " ": L = LEN(A$)
LW = 5: PRINT SPACE$ (10);
FOR I = 1 TO L
    C$ = MID$(A$, I, 1)
        IF C$ <> " " THEN
            W$ = W$ + C$
        ELSE
            LL = LEN (W$)
            IF LW + LL > 30 THEN PRINT : PRINT SPACE$(5); : LW = 0
            IF LL > 0 THEN PRINT W$; " "; : LW = LW + LL + 1: W$ = ""
            IF LL = 0 AND LW > 0 THEN PRINT " "; : LW = LW + 1
        END IF
NEXT I
```

```
'2.4
```

'2.4
' This program will print word with consonants alphabeitized.
' This program will print word with consonants alphabeitized.
INPUT "Enter word: "; A$: L = LEN(A$): V\$ = "AEIOU"
INPUT "Enter word: "; A$: L = LEN(A$): V\$ = "AEIOU"
DIM V$(L) , C$(L), A(L)
DIM V$(L) , C$(L), A(L)
FOR I = 1 TO L
FOR I = 1 TO L
B\$ = MID$(A$, I, 1): J = 1
B\$ = MID$(A$, I, 1): J = 1
WHILE (J < 5) AND (MID$(V$, J, 1) <> B$): J = J + 1: WEND
 WHILE (J < 5) AND (MID$(V$, J, 1) <> B$): J = J + 1: WEND
IF MID$(V$, J, I) <> B\$ THEN
IF MID$(V$, J, I) <> B\$ THEN
C=C + 1:C$(C) = B$
C=C + 1:C$(C) = B$
ELSE
ELSE
V = V + I: A(I) = 1: V$(V) = B$
V = V + I: A(I) = 1: V$(V) = B$
END IF
END IF
NEXT I
NEXT I
FOR I = 1 TO V - 1
FOR I = 1 TO V - 1
FOR J = I + I TO V
FOR J = I + I TO V
IF V\$ (I) > V\$ (J) THEN X\$ = V$(I): V$(I) = V\$ (J): V\$ (J) = X\$
IF V\$ (I) > V\$ (J) THEN X\$ = V$(I): V$(I) = V\$ (J): V\$ (J) = X\$
NEXT J
NEXT J
NEXT I
NEXT I
FOR I = 1 TO C - 1
FOR I = 1 TO C - 1
FOR J = I + 1 TO C
FOR J = I + 1 TO C
IF C$(I) > C$(J) THEN X\$ = C\$ (I):C\$ (I) = C\$ (J):C\$ (J) = X\$
IF C$(I) > C$(J) THEN X\$ = C\$ (I):C\$ (I) = C\$ (J):C\$ (J) = X\$
NEXT J
NEXT J
NEXT I
NEXT I
FOR I = 1 TO L
FOR I = 1 TO L
IF A(I) = 1 THEN VV = VV + 1: PRINT V\$ (VV);
IF A(I) = 1 THEN VV = VV + 1: PRINT V\$ (VV);
IF A(I) = 0 THEN CC = CC + 1: PRINT C\$ (CC);
IF A(I) = 0 THEN CC = CC + 1: PRINT C\$ (CC);
NEXT I

```
NEXT I
```

```
'2.5
' This program will print common letters and line up words.
'
INPUT "Enter N: "; N
FOR I = 1 TO N: INPUT "Enter word: "; A\$(I): NEXT I
FOR I = 1 TO 26
        \(X \$=\operatorname{CHR}(64+I): C O=-1: J=1\)
        WHILE (J <= N) AND CO
            CO \(=\operatorname{INSTR}(A \$(J), \quad X \$)\)
            \(J=J+1\)
        WEND
        IF CO THEN PRINT X\$; " "; : FOUND = -1
NEXT I
IF NOT FOUND THEN PRINT "NO COMMON LETTERS": END
PRINT : INPUT "Choose letter: "; A\$
FOR I = 1 TO N
    J = 1: WHILE MID\$ (A\$ (I), J, 1) <> A\$: J = J + 1: WEND
    PRINT SPACE\$ (10 - J) ; A\$(I)
NEXT I
```

```
'2.6
' This program will keep score for a double dual race.
'
CLS : DIM IN$ (21)
FOR I = 1 TO 21
    PRINT "Place "; I; ":"; : INPUT IN$(I)
    IF I > 1 THEN
            J = 1
            WHILE J <= TN AND INIT$(J) <> IN$(I): J = J + 1: WEND
        END IF
        IF (INIT$(J) <> IN$(I)) OR (I = I) THEN
            TN = TN + 1: INIT$(TN) = IN$(I)
        END IF
NEXT I
            Assert TEAM$(1, 2, 3) = 3 unique team INITIALS
FOR I = 1 TO 2
    FOR J = I + 1 TO 3
        PL = 0: T1 = 0: T2 = 0: T1PL=0: T2PL=0
        FOR K = 1 TO 21
                IF IN$(K) = INIT$(I) THEN
                PL = PL + 1: T1 = T1 + PL: T1PL = T1PL + 1
                TEAM1(T1PL) = PL
                    END IF
                    IF IN$(K) = INIT$(J) THEN
                PL = PL + 1: T2 = T2 + PL: T2PL = T2PL + 1
                TEAM2 (T2PL) = PL
                END IF
            NEXT K
            T1 = T1 - TEAM1 (6) - TEAM1 (7)
            T2 = T2 - TEAM2 (6) - TEAM2 (7)
            PRINT "TEAM "; INIT$(I); ":"; TI; " POINTS"
            PRINT "TEAM "; INIT$(J); ":"; T2; " POINTS"
            IF (T1 < T2) OR (T1 = T2 AND TEAM1 (6) < TEAM2 (6)) THEN
            PRINT "TEAM "; INIT$(I);
        ELSE
            PRINT "TEAM "; INIT$(J) ;
        END IF
        PRINT " WINS!": PRINT
    NEXT J
NEXT I
```

```
'2.7
' This program will allow manipulation of 3x3 array of data.
DATA 10.11, 20.22, 30.33
DATA 11.1, 22.2, 33.3
DATA 10, 20, 30
FOR I = 1 TO 3: FOR J = 1 TO 3: READ A(I, J): NEXT J, I
WHILE C$ <> "C"
    CLS
    PRINT "A. EDIT OR CHANGE A VALUE"
    PRINT "B. DISPLAY THE RESULTS"
    PRINT "C. QUIT."
    INPUT "Enter option: "; C$
        IF C$ = "A" THEN
            INPUT "Enter row, col: "; ROW, COL
            INPUT "Enter number: "; A(ROW, COL)
        ELSEIF C$ = "B" THEN
            FOR I = 1 TO 3: A(I, 4) = 0: NEXT I
            FOR J = 1 TO 3: A(4, J) = 0: NEXT J: TOT = 0
            FOR I = 1 TO 3
                    FOR J = 1 TO 3
                    PRINT USING "###.## "; A(I, J); : TOT = TOT + A(I, J)
                    A(4, J) = A(4, J) + A(I, J): A(I, 4) = A(I, 4) + A(I, J)
                    NEXT J
                    PRINT USING "###.##"; A(I, 4)
        NEXT I
        FOR J = 1 TO 3: PRINT USING "###.## "; A(4, J); : NEXT J
        PRINT USING "###.##"; TOT
        END IF
        IF C$ <> "C" THEN
            PRINT : PRINT "Press any key: ";
        A$ = "": WHILE A$ = "": A$ = INKEY$: WEND
    END IF
WEND
'2.8
' This program will print all combinations of 4 digits.
FOR A = 1 TO 8
    FOR B = A + 1 TO 9
        P = A * B
        IF P >= 10 THEN
            P$ = MID$ (STR$ (P), 2)
            C = VAL (MID$(P$, 1, 1)): D = VAL (MID$(P$, 2, 1))
            IF NOT (A = C OR A = D OR B = C OR B = D) THEN
                PRINT A; B; C; D, A; "X"; B; "= "; P$: S = S + 1
            END IF
        END IF
    NEXT B
NEXT A
PRINT " TOTAL ="; S
```

```
'2.9
' This program will select words, given a string w/wildcard.
INPUT "Enter N: "; N: DIM A$(N)
FOR I = 1 TO N: INPUT "Enter word: "; A$(I): NEXT I
DO
    INPUT "Enter string: "; A$: L = LEN(A$): W = 0
    I = INSTR(A$, "*"): IF I = 0 THEN END
        Asterisk is position I
    L$ = LEFT$(A$, I - 1): R$ = RIGHT$ (A$, L - I)
    FOR J = 1 TO N
            IF LEFT$(A$ (J), I - 1) = L$ THEN
                IF RIGHT$(A$(J), L - I) = R$ THEN
                PRINT A$(J): W = 1
                END IF
            END IF
    NEXT J
    IF W = O THEN PRINT "NO WORDS FOUND"
    PRINT
LOOP UNTIL I = 0
'2.10
' This program will maintain air conditioning in 3 rooms.
INPUT "Enter last 5-minutes:"; LM
CLS : OF = 72: CO = 65: DR = 79
PRINT " OF CO DS OFFICE COMP. DRY. MIN:SEC"
DO
    IF ((M MOD 5 = 0) AND S = 0) OR CH = 1 THEN
        PRINT O; C; D; " ";
        PRINT USING "##.#"; OF; : PRINT " ";
        PRINT USING "##.#"; CO; : PRINT " ";
        PRINT USING "##.#"; DR; : PRINT " ";
        PRINT USING "###:"; M;
        IF S > O THEN PRINT USING "##"; S ELSE PRINT "OO"
        CH = 0
    END IF
    S = S + 15: IF S = 60 THEN M = M + 1: S = 0
    OF = OF + .1 - OFAIR
    CO = CO + . 2 - COAIR
    DR = DR + .025 - DRAIR
    IF OF > 78 AND O = 0 THEN O = 1: CH = 1
    IF CO > 70 AND C = 0 THEN C = 1: CH = 1
    IF DR > 85 AND D = 0 THEN D = 1: CH = 1
    IF OF < 72 AND O = 1 THEN O = 0: CH = 1
    IF CO < 65 AND C = 1 THEN C = 0: CH = 1
    IF DR < 75 AND D = 1 THEN D = 0: CH = 1
    AIR = (O + C + D) * 2
    IF AIR = 0 THEN
        OFAIR = 0: COAIR = 0: DRAIR = 0
    ELSE
        OFAIR = O / AIR: COAIR = C / AIR: DRAIR = D / AIR
    END IF
LOOP UNTIL (M = LM) AND (S > 0)
```

'3.1
' This program will display the sides of a die.
' 6 ways to represent die (each with different top)
' DATA Top, Front, Right, Back, Left, (Bottom derived from top) DATA 1, 5, 4, 2, 3
DATA 6, 5, 3, 2, 4
DATA 5, 1, 3, 6, 4
DATA 2, 1, 4, 6, 3
DATA 3, 5, 1, 2, 6
DATA 4, 5, 6, 2, 1
INPUT "Enter top, front: "; T, F
' Determine which data set to use (based on top \#)
WHILE A <> T
READ A
FOR J = 1 TO 4: READ B(J): NEXT J WEND
' Rotate sides till a side matches the front \#
J = 1
WHILE B(J) <> F:

$$
J=J+1
$$

WEND
IF J = 4 THEN J = 0
$R=J+1$
'Generate rest of sides, sum of opposites sides = 7
PRINT USING "TOP=\# FRONT=\# RIGHT=\#"; T; F; B(R)
PRINT USING "BACK=\# LEFT=\# BOTTOM=\#"; 7-F; 7-B(R); 7-T

```
'3.2
' This program will factor a quadratic equation.
'
INPUT "Enter A, B, C: ", A, B, C
IF A < O THEN A = -A: B = -B: C = - C
IF A > 1 THEN
    FOR I = A TO 2 STEP -1
        IF (A MOD I = 0) AND (B MOD I = 0) AND (C MOD I = 0) THEN
            A = A / I: B = B / I: C = C / I
            PRINT LTRIM$(STR$(I));
        END IF
    NEXT I
END IF
S = B * B - 4 * A * C
IF S < O THEN PRINT "CANNOT BE FACTORED": END
H = INT(SQR(S) + .I): E = 2 * A
R(1) = -B + H: R(2) = - B - H
FOR K = 1 TO 2
    D = E: N = R(K)
    I = D
    WHILE (I > O) AND ((N MOD I <> O) OR (D MOD I <> 0))
        I = I - 1
    WEND
    N = N / I: D = D / I
    PRINT "("; : IF D > 1 THEN PRINT LTRIM$(STR$ (D));
    PRINT "X";
    IF N < O THEN PRINT "+"; LTRIM$(STR$((-N))); ")";
    IF N > O THEN PRINT "-"; LTRIM$(STR$(N)); ")";
NEXT K
```

```
'3.3
' This program will simulate a calculator.
INPUT "Enter expression: "; A\$: L = LEN(A\$)
FOR \(\mathrm{I}=1 \mathrm{TO} \mathrm{L}\)
    \(B \$=\operatorname{MID} \$(A \$, I, 1)\)
    IF ASC(B\$) >= ASC("0") THEN
            \(C \$=C \$+B \$\)
    ELSE
        \(J=J+1: A(J)=\) VAL (C\$): C\$ = ""
        B(J) = INSTR("+-*/", B\$)
    END IF
NEXT I
\(\mathrm{J}=\mathrm{J}+1: \mathrm{A}(\mathrm{J})=\mathrm{VAL}(\mathrm{C} \$): \mathrm{K}=1\)
FOR I = 1 TO J - 1
    IF \(B(I)\) < 3 THEN
        \(B(K)=B(I): K=K+1: A(K)=A(I+1)\)
    ELSE
        IF \(B(I)=3\) THEN
            \(A(K)=A(K)\) * \(A(I+1)\)
        ELSE
            \(A(K)=A(K) / A(I+1)\)
        END IF
    END IF
NEXT I
\(S=A(1)\)
IF \(\mathrm{K}>1\) THEN
    FOR I = 1 TO K - 1
        IF \(B(I)=2\) THEN \(S=S-A(I+1) \operatorname{ELSE} S=S+A(I+1)\)
    NEXT I
END IF
PRINT USING "\#\#\#.\#\#\#"; S
'3.4
' This program will compute all digits of \(N\) factorial.
INPUT "Enter N: "; N: DIM A (3 * N)
\(D=1: A(1)=1\)
FOR I = 1 TO N
    FOR J = 1 TO D
        \(A(J)=A(J) * I+C: \quad C=\operatorname{INT}(A(J) / 10)\)
        \(A(J)=A(J)-10 * C\)
    NEXT J
    WHILE C > 0
        \(C C=I N T(C / 10): D=D+1: A(D)=C-10 * C C: C=C C\)
    WEND
NEXT I
FOR I = D TO 1 STEP -1: PRINT MID\$ (STR\$(A(I)), 2); : NEXT I
```

```
13.5
' This program will sum and subtract 2 big decimals.
DIM A \((30), \mathrm{B}(30), \mathrm{C}(30), \mathrm{D}(30)\) : CLS
INPUT "Enter \#1: "; A\$: INPUT "Enter \#2: "; B\$
\(A=\operatorname{LEN}(A \$): B=\operatorname{LEN}(B \$)\)
FOR I = A TO 1 STEP - 1
    IF MID\$ (A\$, I, 1) = "." THEN
        \(X=I\)
    ELSE
        \(S=S+1: A(S)=\operatorname{VAL}(\operatorname{MID} \$(A \$, I, 1))\)
    END IF
NEXT I: \(S=0\)
FOR I = B TO 1 STEP - 1
    IF MID\$ (B\$, I, I) = ". " THEN
        \(Y=I\)
    ELSE
        \(S=S+1: B(S)=\operatorname{VAL}(\operatorname{MID}(B \$, I, 1))\)
    END IF
NEXT I
' Allign decimal point
\(G=A-X: H=B-Y\)
IF \(G>H\) THEN \(L=G E L S E L=H\)
\(Z=G-H\)
IF \(\mathrm{Z}>0\) THEN
' Second \# is smaller, so place leading 0s and align decimal
    FOR I = B - 1 TO 1 STEP -1
            \(B(I+Z)=B(I): B(I)=0\)
    NEXT I
    \(B=B+Z\)
ELSEIF \(Z<0\) THEN
' First \# is smaller, so place leading 0s and align decimal
    FOR I = A - 1 TO 1 STEP -1
            \(A(I-Z)=A(I): A(I)=0\)
        NEXT I
        \(A=A-Z\)
END IF
IF \(A>B\) THEN \(Y=A-1\) ELSE \(Y=B-1\)
' Add and subtract
FOR I = 1 TO Y
    \(C(I)=A(I)+B(I)+C: C=I N T(C(I) / 10)\)
    \(C(I)=C(I)-C * 10\)
    \(D(I)=A(I)-B(I)-D\)
    \(I F D(I)<0\) THEN \(D=1\) ELSE \(D=0\)
    \(D(I)=D(I)+D * 10\)
NEXT I
PRINT "SUM = "; : IF C > 0 THEN PRINT LTRIM\$ (STR\$ (C) ) ;
FOR I \(=\mathrm{Y}\) TO 1 STEP -1
    IF I = L THEN PRINT ".";
    PRINT LTRIM\$ (STR\$ (C (I)) ) ;
NEXT I
PRINT : PRINT "DIFFERENCE = ";
FOR I \(=\mathrm{Y}\) TO 1 STEP - 1
    IF \(I=L\) THEN PRINT ".";
    PRINT LTRIM\$ (STR\$ (D (I)) ) ;
```

NEXT I

```
'3.6
' This program will control the movements of a snake.
'
CLS : DIM A(25, 81)
V = 12: H = 8: LOCATE V, H
FOR I = 8 TO 32
    PRINT "*"; : A(V, I) = 1
    A$ = A$ + "12": B$ = B$ + RIGHT$(STR$(I), 2)
NEXT I
WHILE D$ = "": D$ = INKEY$: WEND: C$ = D$
DO UNTIL C$ = CHR$(27)
    FOR I = 1 TO 100
        D$ = INKEY$: IF D$ <> "" THEN C$ = D$
    NEXT I
    IF C$ = "I" THEN V = V - I
    IF C$ = "M" THEN V = V + 1
    IF C$ = "J" THEN H = H - 1
    IF C$ = "K" THEN H = H + 1
    IF A(V, H) OR V = O OR V = 25 OR H = O OR H = 81 THEN END
    A(V, H) = 1: LOCATE V, H: PRINT "*"
    X = VAL(RIGHT$(A$, 2)): Y = VAL(RIGHT$(B$, 2))
    LOCATE X, Y: PRINT " "
    A(X, Y) = 0
    A$ = LEFT$(A$, 24 * 2): B$ = LEFT$(B$, 24 * 2)
    A$ = RIGHT$(STR$ (V), 2) + A$
    B$ = RIGHT$ (STR$ (H), 2) + B$
LOOP
```

13.7
', This program will print 3 permutations of a word.
INPUT "Enter word: "; A\$: INPUT "Enter K: "; KK: L = LEN(A\$)
FOR I = 1 TO L: A\$ (I) = MID\$ (A\$, I, 1) : NEXT I
' Alphabetize letters
FOR I = 1 TO L - 1 FOR J = I + 1 TO L
IF A\$ (I) > A\$ (J) THEN X\$ = A\$(I) : A\$ (I) = A\$ (J) : A\$ (J) = X\$
NEXT J
NEXT I
' Produce factorials $F(I)=(I-1)$!
FOR I = 1 TO L
F = 1
FOR J = 1 TO I - 1: F = F * J: NEXT J
$F(I)=F$
NEXT I
FOR T = 1 TO 3
$\mathrm{K}=\mathrm{KK} * \mathrm{~T}-1$
' Generate Kth permutation
FOR I = L TO 1 STEP -1
$\mathrm{X}=\mathrm{INT}(\mathrm{K} / \mathrm{F}(\mathrm{I}))$
FOR J = 1 TO L
IF A(J) = 0 THEN
$S=S+1:$ IF S > X THEN A(J) = 1: PRINT A\$ (J); : J = L
END IF
NEXT J
$S=0: K=K-F(I) * X$
NEXT I
FOR $I=1$ TO L: A(I) = 0: NEXT I
PRINT " ";
NEXT T

```
'3.8
' This program will display N pennies on board.
INPUT "Enter N: "; N: DIM A(N): CLS
PRINT "TOTAL ="; N
IF N = 8 THEN SP = 1 ' 8 and 14 are special cases
J = N MOD 2: J = 2 - J: S = J
IF N = 14 THEN S = J + 2
PRINT " ";
FOR I = 1 TO N: PRINT USING "##"; I MOD 10; : NEXT I
PRINT
FOR I = 1 TO N: PRINT USING "#"; I MOD 10: NEXT I
    FOR I = 1 TO N
    A(I) = S
    IF N = 14 AND I = 14 THEN S = 2: A(I) = S
    LOCATE 2 + I, 2 * S + I: PRINT "*"
    S = S + 2 + SP
    IF S > N THEN
        IF SP THEN S = S - N ELSE S = (N MOD 2) + 1
    END IF
NEXT I
FOR I = 1 TO N
    LOCATE I + 2, 2 * N + 4: PRINT "(";
    PRINT LTRIM$(STR$(I)); ","; LTRIM$(STR$(A(I))); ") ";
    PRINT "SUM ="; I + A(I)
NEXT I
13.9
' This program will determine # of moves made to a stack.
' 1 block - 1 move (obvious)
' 2 blocks- 3 moves (Move 1 stack, move #2, move 1 stack)
' 3 blocks- 7 moves (Move 2 stack, move #3, move 2 stack on #3)
    (3 moves + 1 move + 3 moves)
    4 blocks- }15\mathrm{ moves (Move 3 stack, move #4, move 3 stack on #4)
    (7 moves + 1 move + 7 moves)
    N blocks- 2^N - 1 moves
DIM A(16)
INPUT "Enter N: "; N: A(1) = 1
FOR I = 2 TO N: A(I) = A(I - 1) * 2 + 1: NEXT I
PRINT A(N)
```

```
'3.10
' This program will find set of #s P, Q, R (P = Q x R).
INPUT "Enter S:"; S
Q = S
DO
    DO
    Q = Q + 1: X1 = INT (Q / 10): Y1 = Q - X1 * 10
    LOOP UNTIL XI <> Y1
    NU = INT(10000 / Q)
    FOR R = NU TO 999
        X2 = INT(R / 100): C = R - X2 * 100
        Y2 = INT(C / 10): Z2 = C - Y2 * 10
        IF X2 <> Y2 AND Y2 <> Z2 AND X2 <> Z2 THEN
        IF X1 <> X2 AND X1 <> Y2 AND X1 <> Z2 THEN
        IF Y1 <> X2 AND Y1 <> Y2 AND Y1 <> Z2 THEN
            A(X1) = 1:A(Y1) = 1: A(X2) = 1:A(Y2) = 1:A(Z2)=1
            P$ = STR$(Q * R)
            FOR I = 2 TO 6
                X = VAL(MID$(P$, I, 1)): IF A(X) THEN DUPL = - I
            NEXT I
            FOR I = 2 TO 5
                FOR J = I + 1 TO 6
                IF MID$(P$, I, 1) = MID$(P$, J, 1) THEN DUPL = -1
                NEXT J
            NEXT I
            IF NOT DUPL THEN
                PRINT "P = "; P$;
                PRINT USING " Q = ## R = ###"; Q; R: END
            END IF
            FOR I = 0 TO 9: A(I) = 0: NEXT I: DUPL = 0
            END IF
            END IF
            END IF
    NEXT R
LOOP UNTIL Q > 99
```


FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '86 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program will print "THIS IS THE EASIEST PROGRAM!".
CLS
A$ = "THIS IS THE EASIEST PROGRAM!"
LOCATE 12, (80 - LEN(A$)) / 2: PRINT A$
'1.2
', This program will display the sum, difference, and product.
INPUT "Enter two numbers: "; A, B
PRINT "SUM = "; A + B
PRINT "DIFFERENCE = "; A - B
PRINT "PRODUCT = "; A * B
'1.3
' This program will sum 1 + (1/2)^2 + (1/3)^3 + (1/4)^4 + ...
' until the difference between it and the next term is within E.
'
INPUT "Enter test value E: "; E
I = 1
SUM = 1: LSUM = 0
WHILE (SUM - LSUM) >= E
    I = I + 1
    TRM = 1 / I: PROD = 1
    FOR J = 1 TO I: PROD = PROD * TRM: NEXT J
    LSUM = SUM
    SUM = SUM + PROD
WEND
PRINT USING "#.######"; LSUM
```

```
'1.4
' This program will print a check given name and amount.
'
CLS
INPUT "Enter first name: "; F$
INPUT "Enter middle name: "; M$
INPUT "Enter last name: "; L$
I$ = LEFT$ (M$, 1)
INPUT "Enter amount: "; AMOUNT$
' Display border
LOCATE 6, 1
PRINT STRING$(39, "*")
FOR I = 1 TO 9
    LOCATE 6 + I, 1: PRINT "*"
    LOCATE 6 + I, 39: PRINT "*"
NEXT I
PRINT STRING$(39, "*")
'
LOCATE 8, 3: PRINT "BEN'S TOWING SERVICE"
LOCATE 9, 3: PRINT "4563 WRECKER AVENUE"
LOCATE 10, 3: PRINT "WAVERLY, ARKANSAS 45632"
LOCATE 12, 4: PRINT "PAY TO THE ORDER OF ";
PRINT F$; " "; I$; ". "; L$
LOCATE 14, 4: PRINT "THE SUM OF $"; AMOUNT$
LOCATE 22, 1
'1.5
' This program will determine which prisoners may be released.
DIM CELL(100)
FOR I = 1 TO 100: CELL(I) = 1: NEXT I 'Cells initially open
FOR I = 2 TO 100
    J = 1
    WHILE J <= 100
        CELL(J) = 1 - CELL(J): J = J + I
        WEND
NEXT I
FOR I = 1 TO 100
    IF CELL(I) = 1 THEN PRINT "CELL"; I
NEXT I
```

```
'1.6
' This program will determine how much money accumulates.
' Double precision variables (#) are needed.
'
INPUT "Enter monthly investment: "; MONTH#
INPUT "Enter end of year deposit: "; DEP#
INPUT "Enter annual rate of interest: "; RATE#
PRINT
RATE# = RATE# / (12 * 100) 'Rate per month in yr in percent
FOR YEAR = 1 TO 20
    FOR J = 1 TO 12
        SUM# = SUM# + MONTH#
        SUM# = SUM# + RATE# * SUM#
        NEXT J
        SUM# = SUM# + DEP#
NEXT YEAR
SUM# = INT(SUM# * 100 + .5) / 100
PRINT "AMOUNT AT END OF YEAR 20 IS $"; LTRIM$(STR$(SUM#))
```

'1.7
' This program will drop g in words ending with ing or ings.
,
INPUT "Enter sentence: "; S\$
S\$ = S\$ + " "
L = LEN(S\$): W\$ = ""
FOR I = 1 TO L
CH\$ $=\operatorname{MID}(\mathrm{S} \$, \mathrm{I}, ~ 1)$
IF CH\$ <> " " THEN
W\$ = W\$ + CH\$
ELSE
LENW = LEN(W\$)
IF LENW >= 4 THEN
EN1\$ = MID\$ (W\$, LENW - 2, 3)
EN2\$ = MID\$ (W\$, LENW - 3, 4)
IF EN1\$ = "ING" THEN W\$ = MID\$ (W\$, 1, LENW - 1)
IF EN2\$ = "INGS" THEN W\$ = MID\$ (W\$, 1, LENW - 2) + "S"
END IF
PRINT W\$; " ";
W\$ = " "
END IF
NEXT I

```
'1.8
' This program simulates the population growth of rabbits.
I
INPUT "Enter initial population: "; INIT
INPUT "Enter point of over population: "; OP
PRINT
POP = INIT
DIEING = (POP >= OP)
FOR MONTH = 1 TO 23
    IF DIEING THEN
            IF POP < 2 / 3 * INIT THEN
                POP = POP + POP * . 2: DIEING = 0
            ELSE
                POP = POP - POP * . 15
            END IF
        ELSE
            IF POP >= OP THEN
                DIEING = -1: INIT = INT (POP)
                POP = POP - POP * . 15
            ELSE
                POP = POP + POP * . 2
            END IF
        END IF
        PRINT "POPULATION FOR MONTH"; MONTH; "IS"; INT(POP + .5)
NEXT MONTH
```

'1.9
' This program doubles every e that appears as a single e.
INPUT "Enter sentence: "; SENT\$
FOR I = 1 TO LEN (SENT\$)
CH\$ = MID\$ (SENT\$, I, 1)
NCH\$ = MID\$ (SENT\$, I + 1, 1)
IF CH\$ = "E" AND LCH\$ <> "E" AND NCH\$ <> "E" THEN PRINT "E";
PRINT CH\$;
$\mathrm{LCH}=\mathrm{CH} \$$
NEXT I
IF NCH\$ = "E" AND LCH\$ <> "E" THEN PRINT "E";
PRINT NCH\$
'1.10
' This program will display common elements of two lists. '
DIM A(12), B(12), C(12)
FOR I = 1 TO 12
PRINT "Enter"; I; "of 12: "; : INPUT A(I)
NEXT I
FOR I = 1 TO 11
PRINT "Enter"; I; "of 11: "; : INPUT B(I)
NEXT I
'
FOR I = 1 TO 12
FOR J = 1 TO 11
IF $A(I)=B(J)$ THEN $C(I)=1$
NEXT J
NEXT I
FOR I = 1 TO 12 FOR J = I + 1 TO 12

IF $A(I)=A(J)$ AND $C(J)>0$ THEN $C(J)=C(J)+1$ NEXT J
NEXT I
FOR I = 1 TO 12
IF C(I) = 1 THEN PRINT A(I); " ";
NEXT I

```
'2.1
' This program will right justify sentence within 65 columns.
COL = 65
INPUT "Enter sentence: "; SENT$
SENT$ = SENT$ + " ": L = LEN (SENT$)
I = 1: WN = 1: WORD$(WN) = "": TOTCH = 0
WHILE I <= L
        CH$ = MID$ (SENT$, I, 1)
        IF CH$ <> " " THEN
            WORD$ (WN) = WORD$ (WN) + CH$
        ELSE
            IF WORD$(WN) <> "" THEN
                    TOTCH = TOTCH + LEN (WORD$ (WN))
                    WN = WN + 1: WORD$(WN) = ""
        END IF
    END IF
    I = I + I
WEND
WN = WN - 1
SPAVE = INT((COL - TOTCH) / (WN - 1))
EXTRA = (COL - TOTCH) - (SPAVE * (WN - 1))
FOR I = 1 TO WN
    IF I <= EXTRA THEN EX = 1 ELSE EX = 0
    PRINT WORD$(I); SPACE$(SPAVE + EX);
NEXT I
'2. 2
' This program will produce a repeating patern of XXX ---.
INPUT "Enter total number of X's and -'s: "; TOTALXD
INPUT "Enter number of X's: "; NUMX
INPUT "Enter number of rows: "; ROWS
X1$ = "": X2$ = "": D1$ = "": D2$ = ""
FOR I = 1 TO NUMX
    X1$ = X1$ + "X"
    D2$ = D2$ + "-"
NEXT I
FOR I = 1 TO TOTALXD - NUMX
    X2$ = X2$ + "X"
    D1$ = D1$ + "-"
NEXT I
FOR ROW = 1 TO ROWS
    IF ROW - INT(ROW / 2) * 2 = 1 THEN
        FOR I = 1 TO 4: PRINT X1$; D1$; : NEXT I
        ELSE
            FOR I = 1 TO 4: PRINT D2$; X2$; : NEXT I
        END IF
        PRINT
NEXT ROW
```

```
'2. 3
' This program will code or decode a message.
ST1$ = "ZXCVBNMASDFGHJKLQWERTYUIOP "
ST2$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ "
WHILE OP < 3
    PRINT
    PRINT "I) ENCODE"
    PRINT "2) DECODE"
    PRINT "3) END"
    INPUT "Choose: "; OP
    IF OP = 3 THEN END
    INPUT "Enter message: "; MESSAGE$
    FOR I = 1 TO LEN (MESSAGE$)
        CH$ = MID$ (MESSAGE$, I, 1)
        IF CH$ <> " " THEN
            IF OP = 1 THEN
                CH$ = MID$(ST1$, ASC(CH$) - 64, 1)
            ELSE
                J = INSTR(ST1$, CH$)
                CH$ = MID$(ST2$, J, 1)
            END IF
        END IF
        PRINT CH$;
    NEXT I
    PRINT
WEND
'2.4
' This program finds the unique mode of a set of }15\mathrm{ numbers.
DIM A(15), C(15)
FOR I = 1 TO 15
    PRINT "Enter number"; I; ": "; : INPUT A(I)
NEXT I
MAX = 1
FOR I = 1 TO 14
    C(I) = 1
    FOR J = I + I TO 15
        IF A(I) = A(J) THEN
            C(I) = C(I) + I
                IF C(I) > MAX THEN MAX = C(I)
        END IF
    NEXT J
NEXT I
MODEXIST = 0
FOR I = 1 TO 14
    IF C(I) = MAX THEN
        IF MODEXIST THEN PRINT "NO UNIQUE MODE": END
        MODE = A(I) : MODEXIST = -1
    END IF
NEXT I
IF MODEXIST THEN PRINT "MODE IS"; MODE: END
PRINT "NO UNIQUE MODE"
```

```
'2.5
' This program simulates transactions to savings a account.
I
RATE = . 07
INPUT "Enter original balance: "; BALANCE
WHILE OP < 4
    PRINT
    PRINT "1. MAKE A DEPOSIT"
    PRINT "2. MAKE A WITHDRAWAL"
    PRINT "3. CREDIT INTEREST"
    PRINT "4. END"
    INPUT "Enter option: "; OP
    PRINT
    IF OP = 1 THEN
        INPUT "Enter amount to deposit: "; DEP
        PRINT USING "BALANCE BEFORE TRANSACTION $####.##"; BALANCE
        BALANCE = BALANCE + DEP
        PRINT "MAKE A DEPOSIT"
    ELSEIF OP = 2 THEN
        INPUT "Enter amount to withdraw: "; WIT
        PRINT USING "BALANCE BEFORE TRANSACTION $####.##"; BALANCE
        BALANCE = BALANCE - WIT
        PRINT "MAKE A WITHDRAWAL"
    ELSEIF OP = 3 THEN
        PRINT USING "BALANCE BEFORE TRANSACTION $####.##"; BALANCE
        CREDIT = BALANCE * RATE / 12
        CREDIT = INT(CREDIT * 100 + .5) / 100
        PRINT USING "CREDIT INTEREST OF $##.##"; CREDIT
        BALANCE = BALANCE + CREDIT
    END IF
    IF OP < 4 THEN PRINT "NEW "; ELSE PRINT "FINAL ";
    PRINT USING "BALANCE $####.##"; BALANCE
WEND
```

```
'2.6
' This program will sum two positive big numbers.
'
DIM A(39), B(39), C(39)
INPUT "ENTER FIRST NUMBER: "; ST1$
INPUT "ENTER SECOND NUMBER: "; ST2$
L1 = LEN(ST1$): L2 = LEN(ST2$)
FOR I = 1 TO L1
    CH$ = MID$(ST1$, L1 - I + 1, 1)
    A(I) = VAL(CH$)
NEXT I
FOR I = 1 TO L2
    CH$ = MID$(ST2$, L2 - I + 1, 1)
    B(I) = VAL(CH$)
NEXT I
'
IF L1 > L2 THEN MAXL = L1 ELSE MAXL = L2
FOR I = 1 TO MAXL
    C(I) = A(I) + B(I) + CARRY
    IF C(I) > 9 THEN C(I) = C(I) - 10: CARRY = 1 ELSE CARRY = 0
NEXT I
IF CARRY = 1 THEN MAXL = MAXL + 1: C(MAXL) = 1
PRINT "SUM IS ";
FOR I = MAXL TO 1 STEP -1
    PRINT USING "#"; C(I);
NEXT I
```

```
'2.7
', This program will perform conversions.
DATA "INCHES","FEET","MILES","OUNCES","POUNDS","GALLONS"
FOR I = 1 TO 6: READ DEC$(I): NEXT I
DATA 2.54, 0.3048, 1.6093, 28.35, 0.4536, 3.7854
FOR I = 1 TO 6: READ CON(I) : NEXT I
DATA "CENTIMETERS", "METERS", "KILOMETERS", "GRAMS"
DATA "KILOGRAMS", "LITERS"
FOR I = 1 TO 6: READ MET$(I): NEXT I
WHILE OP <> 13
    PRINT
    FOR I = 1 TO 6
        PRINT I;
        IF I - INT(I / 2) * 2 = 1 THEN
            ST$ = MET$(INT((I + 1) / 2)) + " TO "
            ST$ = ST$ + DEC$(INT((I + 1) / 2))
            PRINT ST$; SPACE$(23 - LEN(ST$));
            PRINT USING "## "; I + 6;
            ST$ = MET$(INT((I + 7) / 2)) + " TO "
            ST$ = ST$ + DEC$(INT((I + 7) / 2))
        ELSE
            ST$ = DEC$(INT(I / 2)) + " TO "
            ST$ = ST$ + MET$(INT(I / 2))
            PRINT ST$; SPACE$(23 - LEN(ST$));
            PRINT USING "## "; I + 6;
            ST$ = DEC$(INT((I + 6) / 2)) + " TO "
            ST$ = ST$ + MET$(INT((I + 6) / 2))
        END IF
        PRINT ST$
    NEXT I
    PRINT SPACE$(26); "13 END"
    INPUT "Enter option: "; OP
    IF OP < 13 THEN
        IF OP - INT(OP / 2) * 2 = 1 THEN
            PRINT "Enter number of "; MET$(INT((OP + 1) / 2));
            INPUT ": "; X
            Y = X / CON(INT((OP + 1) / 2))
            PRINT USING "THIS IS EQUIVALENT TO ###.### "; Y;
            PRINT DEC$(INT((OP + 1) / 2))
        ELSE
            PRINT "Enter number of "; DEC$(INT(OP / 2));
            INPUT ": "; X
            Y = X * CON(INT(OP / 2))
            PRINT USING "THIS IS EQUIVALENT TO ###.### "; Y;
            PRINT MET$(INT(OP / 2))
        END IF
    END IF
WEND
```

```
'2.8
' This program will generate a mortgage amortization.
' Double precision variables are needed.
'
INPUT "Enter principal: "; PRINC#
INPUT "Enter % rate of interest: "; RATE#
INPUT "Enter term in years: "; YEARS
INPUT "Enter # of month in year for first payment: "; MONTH
RATE# = RATE# / (12 * 100): AMOUNT# = 1
FOR I = 1 TO YEARS * 12: AMOUNT# = AMOUNT# * (1 + RATE#): NEXT I
PAYMENT# = (RATE# * AMOUNT#) / (AMOUNT# - 1) * PRINC#
C = MONTH - 1: OLDP# = PRINC#
RATE# = RATE# * 12
PRINT "INTEREST PRINCIPAL"
'
FOR I = 1 TO YEARS * 12
    MI# = OLDP# * RATE# / 12
    MP# = PAYMENT# - MI#
    OLDP# = OLDP# - MP#
    PRINT USING "$###.##"; MI#; : PRINT SPACE$(10);
    PRINT USING "$#####.##"; OLDP#
    C = C + I: YI# = YI# + MI#
    IF C - INT(C / 12) * 12 = 0 THEN
        PRINT
        PRINT USING "YEAR'S INTEREST $#####.##"; YI#
        TI# = TI# + YI#: YI# = 0
        PRINT
        A$ = INPUT$ (1)
    END IF
NEXT I
IF MONTH <> I THEN
    PRINT
    PRINT USING "YEAR'S INTEREST $#####.##"; YI#
    TI# = TI# + YI#
END IF
PRINT USING "TOTAL INTEREST $#####.##"; TI#
PRINT USING "MONTHLY PAYMENT $#####.##"; PAYMENT#
```

```
'2.9
' This program calculates the value of sine(x) by a series.
' Double precision variables are needed.
'
INPUT "Enter N degrees: "; N
PI# = 3.1415926535#
IF N > 180 THEN X# = PI# * ((360 - N) / 180)
IF N <= 180 THEN X# = PI# * (N / 180)
POWER = -1
FOR I = 1 TO 6
    POWER = POWER + 2: FACT = 1
    FOR J = 1 TO POWER: FACT = FACT * J N NEXT J
    TRM# = 1
    FOR J = 1 TO POWER: TRM# = TRM# * X#: NEXT J
    TRM# = TRM# / FACT
    IF I - INT (I / 2) * 2 = 1 THEN
        SUM# = SUM# + TRM#
    ELSE
        SUM# = SUM# - TRM#
    END IF
NEXT I
IF N > 180 THEN SUM# = -1 * SUM#: X# = PI# * (N / 180)
PRINT "PARTIAL SUM ="; : IF SUM# < O THEN PRINT " ";
PRINT USING "##.#######"; SUM#
PRINT "ACTUAL SINE ="; : IF SIN(X#) < 0 THEN PRINT " ";
PRINT USING "##.#######"; SIN(X#)
'2.10
' This program will convert a Roman Numeral to Arabic form.
DATA M, 1000, D,500, C,100, L,50, X,10, V,5, I, 1
FOR I = 1 TO 7: READ RN$(I), RV(I): NEXT I
INPUT "Enter Roman Numeral: "; ROMNUM$
L = LEN (ROMNUM$): I = 1: ARABIC = 0
WHILE I < L
    FOR J = 1 TO 7
    IF MID$ (ROMNUM$, I, 1) = RN$ (J) THEN IND1 = J
    IF MID$(ROMNUM$, I + 1, 1) = RN$ (J) THEN IND2 = J
NEXT J
    IF IND1 <= IND2 THEN
        ARABIC = ARABIC + RV(IND1)
    ELSE
        ARABIC = ARABIC + RV(IND2) - RV(IND1): I = I + I
    END IF
    I = I + I
WEND
IF I = L THEN
    FOR J = 1 TO 7
        IF MID$ (ROMNUM$, I, 1) = RN$ (J) THEN IND1 = J
    NEXT J
    ARABIC = ARABIC + RV(IND1)
END IF
PRINT "ARABIC ="; ARABIC
```

```
'3.1
', This program produces montly calendars for the year 1986.
DATA JANUARY,FEBRUARY,MARCH,APRIL,MAY,JUNE,JULY
DATA AUGUST,SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER
DATA 31,28,31,30,31,30,31,31,30,31,30,31
DATA S,M,T,W,T,F,S
DIM MO$(12), DAYS(12)
FOR I = 1 TO 12: READ MO$(I): NEXT I
FOR I = 1 TO 12: READ DAYS(I): NEXT I
FOR I = 1 TO 7: READ D$(I): NEXT I
CLS : PRINT SPACE$(12); "1986": PRINT
FOR M = 1 TO 12
    IF M > 1 THEN CLS
    PRINT SPACE$(13 - INT(LEN (MO$ (M)) / 2)); MO$ (M) : PRINT
    FOR I = 1 TO 7: PRINT " "; D$(I); " "; : NEXT I
    PRINT
'
    IF M = 1 THEN COL = 4
    IF COL > 1 THEN PRINT SPACE$((COL - 1) * 4);
    FOR DAY = 1 TO DAYS(M)
        PRINT USING "##"; DAY; : PRINT " ";
        IF COL < 7 THEN COL = COL + 1 ELSE COL = 1: PRINT
    NEXT DAY
    A$ = "": WHILE A$ = "": A$ = INKEY$: WEND
NEXT M
```

```
'3.2
```

'3.2
' This program finds the root of a 5th degree polynomial
' This program finds the root of a 5th degree polynomial
' of the form Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F = 0.
' of the form Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F = 0.
INPUT "Enter coefficients A,B,C,D,E,F: "; A, B, C, D, E, F
INPUT "Enter coefficients A,B,C,D,E,F: "; A, B, C, D, E, F
DEF FNY (Y) = C * Y ^ 3 + D * Y * Y + E * Y + F
DEF FNY (Y) = C * Y ^ 3 + D * Y * Y + E * Y + F
DEF FNP (X) = A * X ^ 5 + B * X ^ 4 + FNY(X)
DEF FNP (X) = A * X ^ 5 + B * X ^ 4 + FNY(X)
' This algorithm finds 1 and only 1 root (closest to x=0)
' This algorithm finds 1 and only 1 root (closest to x=0)
X1 = -1: X2 = 1
X1 = -1: X2 = 1
' Find sign change between X1 and X2
' Find sign change between X1 and X2
WHILE FNP(X1) * FNP(X2) > 0
WHILE FNP(X1) * FNP(X2) > 0
X1 = X1 - 1: X2 = X2 + 1
X1 = X1 - 1: X2 = X2 + 1
WEND
WEND
' Use binary search to find root
' Use binary search to find root
WHILE X2 - X1 > .000005
WHILE X2 - X1 > .000005
X = (X1 + X2) / 2
X = (X1 + X2) / 2
IF FNP(X) * FNP(X1) > 0 THEN X1 = X ELSE X2 = X
IF FNP(X) * FNP(X1) > 0 THEN X1 = X ELSE X2 = X
WEND
WEND
PRINT "ROOT = ";
PRINT "ROOT = ";
IF X < O THEN PRINT "-"; : X = -X
IF X < O THEN PRINT "-"; : X = -X
PRINT USING "\#.\#\#\#\#\#"; X

```
PRINT USING "#.#####"; X
```

13.3
' This program changes a number from one base to another. '
D\$ = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
INPUT "Enter base A: "; A
INPUT "Enter base B: "; B
INPUT "Enter original number: "; NUMST\$
PRINT : PRINT NUMST\$; " BASE"; A; "EQUALS ";
FOR I = 1 TO LEN (NUMST\$)
POW $=\operatorname{INT}\left(\mathrm{A}^{\wedge}(\right.$ LEN (NUMST\$) -I$\left.)+.01\right)$
$\mathrm{N}=\mathrm{N}+(\operatorname{INSTR}(\mathrm{D} \$, \operatorname{MID}(\mathrm{NUMST}, \mathrm{I}, 1))-1)$ * POW
NEXT I
POW = 1
WHILE POW <= N
EX = EX + 1: POW = POW * B
WEND
EX = EX - 1
' Convert Num to Base B from Base 10
FOR I = EX TO 0 STEP -1
POW = POW / B
$\mathrm{X}=\operatorname{INT}(\mathrm{N} / \mathrm{POW}+\mathrm{.O1})$
PRINT MID\$ (D\$, X + 1, 1);
$\mathrm{N}=\mathrm{N}$ - X * POW
NEXT I
PRINT " BASE"; B

```
'3.4
' This progam will update customers account by SSN's.
DATA 234567890,"JOHN SMITH "
DATA "1234 ANYWHERE LANE, EXIST, KANSAS 66754 ",345.78
DATA 564783219,"GAIL HUSTON "
DATA "543 SOUTH THIRD, BIG TOWN, TEXAS 88642 ",2365.89
DATA 873421765,"TIM JONES
DATA "2387 PALM PLACE, NOME, ALASKA 77643 ",6754.76
DATA 543876543,"JILL RUPERTS"
DATA "4536 123RD STREET, TINY TOWN, MAINE 76765 ",45.18
DATA 345212342,"AL BROWN
DATA "PO BOX 234, TINSEL TOWN, CALIFORNIA 77654 ",3456.09
DATA 565656565,"KERMIT TEU
DATA "1234 LOST LANE, WIMPLE, WISCONSIN 66543 ",78.36
FOR I = 1 TO 6: READ SS$(I), N$(I), A$(I), B(I): NEXT I
INPUT "Enter SSN: "; SSN$
WHILE SSN$ <> "000000000"
    I = 1
    WHILE (SS$(I) <> SSN$) AND (I < 6): I = I + 1: WEND
    INPUT "Enter C for Charge or P for Payment: "; CH$
    INPUT "Enter amount of transaction: "; TRANS
    IF CH$ = "C" THEN B(I) = B(I) - TRANS
    IF CH$ = "P" THEN B(I) = B(I) + TRANS
    PRINT : PRINT USING "NEW BALANCE IS $####.##"; B(I)
    PRINT : INPUT "Enter SSN: "; SSN$
WEND
FOR I = 1 TO 5
    FOR J = I + 1 TO 6
        IF B(I) < B(J) THEN
            SWAP SS$(I), SS$(J)
            SWAP N$(I), N$(J)
            SWAP A(I), A(J)
            SWAP B(I), B(J)
        END IF
    NEXT J
NEXT I
PRINT
PRINT "SSN NAME ADDRESS"; SPACE$(13);
PRINT "BALANCE": PRINT
FOR I = 1 TO 6
    PR$ = SS$(I) + " " + N$(I) + " "
    L = LEN(PR$) - 1
    P1 = INSTR(A$(I), ",")
    P2 = INSTR(P1 + 1, A$(I), ",")
    PRINT PR$; LEFT$(A$(I), P1 - 1); SPACE$(21 - P1);
    PRINT USING "$####.##"; B(I)
    PRINT SPACE$(L); MID$(A$(I), P1 + 1, P2 - P1 - 1)
    PRINT SPACE$(L); MID$(A$(I), P2 + 1)
NEXT I
```

```
'3.5
' This program will print the product of 2 large decimals.
DIM A(30), B(30), PROD(50)
INPUT "Enter first number: "; ASTR$
INPUT "Enter second number: "; BSTR$
ADEC = INSTR(ASTR$, "."): BDEC = INSTR(BSTR$, ".")
ASTR$ = LEFT$(ASTR$, ADEC - 1) + RIGHT$ (ASTR$, LEN(ASTR$) - ADEC)
BSTR$ = LEFT$(BSTR$, BDEC - 1) + RIGHT$(BSTR$, LEN(BSTR$) - BDEC)
LENA = LEN(ASTR$): LENB = LEN(BSTR$)
RDIGITS = LENA - ADEC + LENB - BDEC + 2
FOR I = LENA TO 1 STEP -1
    A(LENA - I + 1) = VAL (MID$(ASTR$, I, 1))
NEXT I
FOR I = LENB TO 1 STEP -1
    B(LENB - I + 1) = VAL (MID$(BSTR$, I, 1))
NEXT I
FOR I = 1 TO LENB
        CARRY = 0
        FOR J = 1 TO LENA
            S = I + J - I
            PROD(S) = PROD(S) + B(I) * A(J) + CARRY
            CARRY = INT(PROD(S) / 10)
            PROD(S) = PROD(S) - CARRY * 10
        NEXT J
        IF CARRY > 0 THEN PROD (S + 1) = CARRY
NEXT I
PRINT "PRODUCT = ";
IF CARRY > 0 THEN S = S + 1
IF S <= RDIGITS THEN PRINT "O";
FOR I = S TO 1 STEP -1
    IF I = RDIGITS THEN PRINT ".";
    PRINT USING "#"; PROD(I);
NEXT I
```

13.6
' This program will determine if a \# can become palindrome. '
DIM B(50), REV(50)
INPUT "Enter number: "; NUMST\$
L = LEN (NUMST\$)
FOR I = 1 TO L
B(L - I + 1) = VAL (MID\$ (NUMST\$, I, 1))
NEXT I
TRY = 0: PAL = 0
WHILE (TRY <= 23) AND (NOT PAL)
PAL = -1
FOR I = 1 TO INT(L / 2)
IF $B(I)<>B(L-I+1)$ THEN PAL $=0$
NEXT I
' Add reverse of number to itself
IF NOT PAL THEN
FOR $I=1$ TO L: REV(I) $=B(L-I+1): N E X T I$
CARRY $=0$
FOR I = 1 TO L
$B(I)=B(I)+\operatorname{REV}(I)+$ CARRY
CARRY $=\operatorname{INT}(B(I) / 10)$
$B(I)=B(I)-C A R R Y * 10$
NEXT I
IF CARRY = 1 THEN L = L + $1: B(L)=1$
TRY = TRY + 1
END IF
WEND
IF NOT PAL THEN PRINT "CANNOT GENERATE A PALINDROME": END FOR I = L TO 1 STEP -1: PRINT USING "\#"; B(I); : NEXT I PRINT " IS A PALINDROME"

```
13.7
' This program will solve an N x N system of equations.
'
INPUT "Enter N: "; N
FOR ROW = I TO N
        PRINT "Enter coefficients for row"; ROW
        FOR COL = 1 TO N
            PRINT USING "CO#"; COL; : PRINT ": ";
            INPUT C(ROW, COL)
    NEXT COL
    INPUT "Enter constant: "; C(ROW, N + 1)
NEXT ROW
' Make main diagonals all ls with Os to the left
FOR ROW = 1 TO N
    DEN = C(ROW, ROW)
    FOR COL = ROW TO N + 1
        C(ROW, COL) = C(ROW, COL) / DEN
    NEXT COL
    FOR R = ROW + 1 TO N
        X = C(R, ROW)
        FOR COL = ROW TO N + 1
            C(R,COL) = C(R,COL) - X * C(ROW, COL)
        NEXT COL
    NEXT R
NEXT ROW
' Make 0s on the right of 1s on main diagonal, not const
FOR ROW = N TO 1 STEP -1
    FOR R = ROW - 1 TO 1 STEP -1
        X = C(R, ROW)
        FOR COL = ROW TO N + I
            C(R,COL) = C(R,COL) - X * C(ROW, COL)
        NEXT COL
    NEXT R
NEXT ROW
' Display solution
PRINT "("; LTRIM$(STR$(INT (C(1, N + 1) + .1)));
FOR ROW = 2 TO N
    PRINT ", "; LTRIM$(STR$(INT(C(ROW, N + 1) + .1)));
NEXT ROW
PRINT ")"
```

'3. 8
' This program prints Kth, $2 *$ Kth, and $3 *$ Kth permutations.
INPUT "Enter word: "; A\$: INPUT "Enter K: "; KK: L = LEN(A\$)
FOR I = 1 TO L: A\$ (I) = MID\$ (A\$, I, 1) : NEXT I
' Alphabetize letters
FOR I = 1 TO L - 1 FOR J = I + 1 TO L
IF A\$ (I) > A\$ (J) THEN X\$ = A\$(I) : A\$ (I) = A\$ (J) : A\$ (J) = X\$
NEXT J
NEXT I
' Produce factorials $F(I)=(I-1)!$
FOR I = 1 TO L
$\mathrm{F}=1$
FOR J = 1 TO I - 1: F = F * J: NEXT J
$F(I)=F$
NEXT I
FOR T = 1 TO 3
$\mathrm{K}=\mathrm{KK} * \mathrm{~T}-1$
' Generate Kth permutation
FOR I = L TO 1 STEP -1
$\mathrm{X}=\mathrm{INT}(\mathrm{K} / \mathrm{F}(\mathrm{I}))$
FOR J = 1 TO L
IF A(J) = 0 THEN
$S=S+1:$ IF S > X THEN A(J) = 1: PRINT A\$ (J); : J = L
END IF
NEXT J
$S=0: K=K-F(I) * X$
NEXT I
FOR I = 1 TO L: A(I) = 0: NEXT I
PRINT " ";
NEXT T

```
13.9
' This program will solve cryptarithm puzzle ABB - CB = DEF.
' F = 0 since B-B = 0. A=D+1 or A=D since CB is 2 digits,
' but A<>D. D>B, otherwise D=A. Since B<C, B<9, => E=10+B-C
'
FOR B = 1 TO 8
    FOR C = B + 1 TO 9
        FOR D = 1 TO 8
            F = 0: A = D + 1: E = 10 + B - C
            IF A = B OR A = C OR A = D OR A = E OR A = F THEN PASS = 1
            IF B = C OR B = D OR B = E OR B = F OR C = D THEN PASS = 1
            IF C = E OR C = F OR D = E OR D = F THEN PASS = 1
            IF PASS = O THEN
                TOT = TOT + 1
                PRINT A * 100 + B * 10 + B; "-"; C * 10 + B; "=";
                    PRINT D * 100 + E * 10 + F; " NUMBER"; TOT
            ELSE
                    PASS = 0
            END IF
        NEXT D
    NEXT C
NEXT B
PRINT : PRINT " TOTAL NUMBER OF SOLUTIONS ="; TOT
```

'3.10
' This program will find all 2-digit integers equal to the sum
' of integers in which each digit 0-9 is used exactly once.
FOR I = 0 TO 8
Place digit I infront of 0 and sum the rest of the digits
SUM $=I * 10+0$
FOR J = 0 TO 9
IF (I <> J) AND (J <> 0) THEN
$T R M=J: S U M=S U M+J$
END IF
NEXT J
IF SUM <= 99 THEN
' Display sum followed by example sum process
PRINT SUM; "=";
PRINT I * 10 + 0 ;
FOR J = 0 TO 9
IF (I <> J) AND (J <> 0) THEN
TRM = J: PRINT "+"; J;
END IF
NEXT J
PRINT
END IF
NEXT I

FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '87 BASIC PROGRAM SOLUTIONS

11.1
' This program will print out the sign of a given number. '

INPUT "Enter number:"; N
IF N > O THEN PRINT "POSITIVE"
IF N < O THEN PRINT "NEGATIVE"
IF $\mathrm{N}=0$ THEN PRINT "ZERO"
'1.2
' This program will sum the numbers $n, n+1, \ldots n+20$. '
INPUT "Enter n:"; N
FOR I = 0 TO 20
SUM $=$ SUM $+N+I$
NEXT I
PRINT "SUM ="; SUM
'1.3
' This program will print PROBLEM THREE diagonally.
'
CLS
A\$ = "PROBLEM THREE"
L = LEN (A\$)
ROW $=(24-L) \backslash 2: C O L=(80-L) \backslash 2$
FOR I = 1 TO L
LOCATE ROW + I, COL + I: PRINT MID\$(A\$, I, 1)
NEXT I
'1.4
' This program displays the numbers on the sides of a die. 1
INPUT "Enter number on top:"; T
INPUT "Enter number on front:"; F
INPUT "Enter number on right:"; R
PRINT "TOP="; T
PRINT "FRONT="; F
PRINT "RIGHT="; R
PRINT "BOTTOM="; 7-T
PRINT "BACK="; 7 - F
PRINT "LEFT="; 7-R
'1.5
' This program will fill the screen with random characters. 1
CLS
FOR I $=1 \mathrm{TO} 24$ FOR J = 1 TO 80
$\mathrm{X}=\operatorname{INT}(\operatorname{RND}(3) * 96)+33$ PRINT CHR\$ (X) ; NEXT J
NEXT I
WHILE A\$ = "": A\$ = INKEY\$: WEND
CLS
'1. 6
' This program will display a rectangular array of periods. '
INPUT "Enter coordinates:"; UR, UC, LR, LC
CLS
FOR I = UR TO LR FOR J = UC TO LC

LOCATE I, J: PRINT "."; NEXT J
NEXT I
'1.7
' This program will generate 10 random numbers given a seed. I
INPUT "Enter seed:"; SEED
FOR $I=1$ TO 10
RAND $=($ SEED * $421+1)$
RAND = RAND - INT (RAND / 100) * 100 SEED = RAND PRINT RAND
NEXT I
'1.8
' This program will determine the mass of a fish tank.
1
INPUT "Enter K, L, W, H:"; K, L, W, H MASS $=\mathrm{L} * 12$ * 2.54 * W * 12 * 2.54 * H * 12 * 2.54 MASS = MASS / $1000+\mathrm{K}$
PRINT USING "\#\#\#\#\#.\#\# KILOGRAMS"; MASS;
'1.9
' This program will display 21 rows of letters.
1
CLS
FOR I = 1 TO 21 IF I MOD $2=1$ THEN

PRINT STRING\$ (31, 64 + I) ELSE

FOR J = 1 TO 10
PRINT CHR\$ (64 + I); SPACE\$ (2) ;
NEXT J
PRINT CHR (64 + I) END IF
NEXT I
11.10
' This program will display the time needed to read a book.
DATA THE HISTORY OF THE COMPUTER,400
DATA THE RED DOG RUNS,200
DATA EATING APPLE PIE,150
DATA THE ART OF WINNING,250
INPUT "Enter book title:"; B\$
INPUT "Enter rate (minutes/page):"; SP
I = 0
WHILE (I < 4) AND (A\$ <> B\$)
READ A\$, PA
$I=I+1$
WEND
$\mathrm{M}=\mathrm{PA}$ * SP
$\mathrm{H}=\mathrm{INT}(\mathrm{M} / \mathrm{60}): \mathrm{M}=\mathrm{M}-\mathrm{H} * 60$
PRINT H; "HOURS "; M; "MINUTES"

```
'2.1
' This program will rotate a string N times to the left.
'
INPUT "Enter string: "; S$
INPUT "Enter N:"; N
L = LEN(S$)
N = N MOD L
PRINT RIGHT$(S$, L - N); LEFT$(S$, N)
'2.2
' This program will determine the number of diskettes bought.
'
FOR V = 1 TO 98
    FOR M = 1 TO 99 - V STEP 5
        W = 100 - V - M
        IF W >= 0 AND V * 225 + M * 297 + W * 120 = 23607 THEN
            PRINT V; "VERS "; M; "MAXS "; W; "WABS": END
        END IF
    NEXT M
NEXT V
'2.3
' This program will display a subset of random numbers.
DIM A(15)
RANDOMIZE TIMER
INPUT "Enter list item:"; ITEM
WHILE ITEM <> -1
    A(J) = ITEM
    INPUT "Enter list item:"; ITEM
    J = J + I
WEND
WHILE A$ <> CHR$(27)
    FOR I = 0 TO 4
        SWAP A(I), A(INT(RND * (J - I) + I))
        PRINT A(I)
    NEXT I
    PRINT "PRESS ANY KEY": A$ = ""
    WHILE A$ = "": A$ = INKEY$: WEND
WEND
```

```
'2.4
' This program will display all partitioned sum of number.
I
INPUT "Enter a number less than 20:"; N
FOR I = N TO 1 STEP -1
        IF N MOD I = O THEN
            X = INT(N / I)
            PRINT SPACE$ (N - X);
            I$ = MID$(STR$ (I), 2)
            PRINT I$;
            IF I < N THEN
                FOR J = 1 TO X - 1
                PRINT "+"; I$;
                NEXT J
            END IF
            PRINT
    END IF
NEXT I
'2.5
' This program will calculate the fractional value.
```



```
INPUT "Enter word: "; A$
FOR I = 1 TO 3
    A(I) = ASC(MID$(A$, I, 1)) - 64
NEXT I
N = A(1) * A(2) + A(2) * A(3) + A(1) * A(3)
D = A(1) * A(2) * A(3)
FOR I = D TO 1 STEP -1
    IF N MOD I = O AND D MOD I = O THEN
            PRINT LTRIM$(STR$ (N / I)); "/"; LTRIM$ (STR$(D / I)): END
    END IF
NEXT I
```

```
'2.6
' This program will find a subset of integers.
'
I = I
INPUT "Enter set item:"; ITEM(I)
WHILE ITEM(I) > 0
    I = I + I
    INPUT "Enter set item:"; ITEM(I)
WEND
LASTI = I - 1
INPUT "Enter N:"; N
INPUT "Enter S:"; S
' Sort list
FOR I = 1 TO LASTI - 1
    FOR J = I + 1 TO LASTI
        IF ITEM(I) > ITEM(J) THEN SWAP ITEM(I), ITEM(J)
    NEXT J
NEXT I
SUM = 0
FOR I = 1 TO N: SUM = SUM + ITEM(I): NEXT I
IF SUM > S THEN PRINT "NO": END
PRINT " YES"
FOR I = 1 TO N: PRINT ITEM(I); : NEXT I
'2.7
', This program will determine if patterns are legal/illegal.
'
DATA 1,4,3,4,4,5
DATA 5,2,5,2,5,5
FOR I = 0 TO 5: READ A(I) : NEXT I
FOR I = 0 TO 5: READ B(I): NEXT I
INPUT "Enter pattern:"; P$
STATE = 0
'
' Run the state machine
LP = LEN(P$)
FOR I = 1 TO LP 'Check whole string even if error found
    C$ = MID$(P$, I, I)
    IF C$ <> "A" AND C$ <> "B" THEN STATE = 5 'illegal pattern
    IF C$ = "A" THEN STATE = A(STATE) ELSE STATE = B(STATE)
NEXT I
IF STATE = 4 THEN PRINT "LEGAL PATTERN": END
PRINT "ILLEGAL PATTERN"
```

```
'2.8
' This program will find integers having F factors.
INPUT "Enter M, N, F:"; M, N, F
FOR I = M TO N
    S = 0: X = INT(SQR(I) + .000001)
    FOR J = 1 TO X
            IF I MOD J = O THEN S = S + 2
    NEXT J
    IF X * X = I THEN S = S - 1
    IF S = F THEN PRINT I
NEXT I
```

'2.9
', This program will alphabetize 5 words according to rules.
DIM A\$ (12), B\$(12), C\$(12)
FOR I = 1 TO 5
INPUT "Enter word: "; A\$(I): L = LEN(A\$(I))
FOR J = 1 TO L
$B \$(J)=\operatorname{MID} \$(A \$(I), J, 1)$ NEXT J
' Alphabetize letters within word to make word2 (C\$) FOR J = 1 TO L - 1

FOR K = J + 1 TO L
IF $B \$(J)$ > $B(K)$ THEN SWAP $B \$(J), B \(K)
NEXT K
$C \$(I)=C \$(I)+B \$(J)$ NEXT J $C \$(I)=C \$(I)+B \$(L)$
NEXT I
' Alphabetize words according to word2 (C\$)
FOR I = 1 TO 4 FOR J = I + 1 TO 5

IF C\$(I) > C\$(J) THEN SWAP C\$(I), C\$(J): SWAP A\$(I), A\$(J) NEXT J
NEXT I
FOR I = 1 TO 5: PRINT A\$ (I): NEXT I

```
'2.10
' This program will produce a super-duper input routine
' with 4 types of input.
INPUT "Enter ROW, COL:"; ROW, COL
INPUT "Enter MAX:"; MAX
INPUT "Enter TYPE:"; TYP
CLS : CH$ = " ": INITCOL = COL
DO UNTIL CH$ = CHR$ (13)
    LOCATE ROW, COL: CH$ = ""
    WHILE CH$ = "": CH$ = INKEY$: WEND
'
    IF CH$ = CHR$ (8) THEN ' Backspace pressed
        IF LEN(ENTRY$) > 0 THEN
            ENTRY$ = LEFT$(ENTRY$, LEN(ENTRY$) - 1)
            COL = COL - 1: LOCATE ROW, COL: PRINT " ";
        END IF
    ELSE
        VALIDCH = LEN(ENTRY$) < MAX
        IF VALIDCH THEN
            SELECT CASE TYP
                CASE 1
                IF CH$ <> " " AND (CH$ < "A" OR CH$ > "Z") THEN VALIDCH = 0
                CASE 2
                IF CH$ <> "." AND (CH$ < "O" OR CH$ > "9") THEN VALIDCH = 0
                CASE 3
                IF COL - INITCOL = 2 OR COL - INITCOL = 5 THEN
                    IF CH$ <> "-" THEN VALIDCH = 0
                ELSE
                    IF CH$ < "0" OR CH$ > "9" THEN VALIDCH = 0
                END IF
            END SELECT
        END IF
        IF VALIDCH THEN
            PRINT CH$;
            ENTRY$ = ENTRY$ + CH$
            COL = COL + 1
        END IF
    END IF
LOOP
LOCATE ROW + 2, INITCOL: PRINT ENTRY$
```

13.1
' This program will determine if 2 words are closely spelled.
INPUT "Enter word 1: "; W1\$
INPUT "Enter word 2: "; W2\$
L1 = LEN(W1\$): L2 = LEN(W2\$)
IF ABS (L1 - L2) > 1 THEN PRINT "NOT CLOSE": END
' Find first position where words differ
IF L1 < L2 THEN MIN = L1 ELSE MIN = L2
J = 1
WHILE (J <= MIN) AND MID\$ (W1\$, J, 1) = MID\$ (W2\$, J, 1) $J=J+1$
WEND
IF J > MIN THEN PRINT "CLOSE": END 'Equal or differ by ins/del
IF L1 = L2 THEN
' Check for transposition or one symbol change IF J <> L1 THEN

IF MID\$ (W1\$, J + 1, 1) = MID\$ (W2\$, J, 1) THEN IF MID (W2\$, J + 1, 1) = MID\$ (W1\$, J, 1) THEN
$J=J+1 \quad$ 'Skip over possible transposition END IF
END IF
END IF
IF MID\$ (W1\$, J + 1) = MID\$ (W2\$, J + 1) THEN PRINT "CLOSE": END PRINT "NOT CLOSE": END
ELSE
' Check for insertion or deletion IF L1 > L2 THEN

IF MID\$(W2\$, J) = MID\$(W1\$, J + 1) THEN PRINT "CLOSE": END PRINT "NOT CLOSE"

ELSE

IF MID\$(W1\$, J) = MID\$(W2\$, J + 1) THEN PRINT "CLOSE": END PRINT "NOT CLOSE"
END IF
END IF

```
13.2
' This program will evaluate an NxN determinant for N=2,3,4.
'
INPUT "Enter dimension N:"; N
FOR I = 1 TO N
        FOR J = 1 TO N
            PRINT USING "Enter row #"; I;
            PRINT USING ", col #:"; J; : INPUT A(I, J)
        NEXT J
NEXT I
' -- 2x2
IF N = 2 THEN
        PRINT A(1, 1) * A(2, 2) - A(1, 2) * A(2, 1)
ELSE
' -- 3x3
        IF N = 3 THEN
            K = 4: GOSUB Det 3x3
            PRINT T
        ELSE
' - - 4X4
            FOR K = 1 TO 4
                            A = A (4, K) * (-1) ^ K
'
Det3x3:
            FOR I = 1 TO 3
                FOR J = 1 TO 4
                IF J <> K THEN
                    S =S + I:B(I,S)=A(I, J)
                    B(I,S + 3) = A(I,J)
                END IF
                    NEXT J: S = 0
            NEXT I
            FOR I = 1 TO 3
                    T = T + B (1, I) * B (2, I + I) * B (3, I + 2)
                    T = T - B (1,I + 2) * B (2,I + I) * B(3, I)
            NEXT I
            IF N = 3 THEN RETURN
'
            B=B + T * A: T = 0
        NEXT K: PRINT B
    END IF
END IF
```

13.3
' This program will display the number of word occurrences.
DIM WORD\$ (50), WORDTOT(50)
INPUT "Enter text: "; LINES\$
START = 1: NUMOFWORDS = 0
WHILE START <= LEN(LINES\$)
ENDOFWORD = 0: NEXTWORD\$ = ""
WHILE (START <= LEN(LINES\$)) AND (NOT ENDOFWORD)
CH\$ = MID\$ (LINES\$, START, 1)
IF (CH\$ < "A" OR CH\$ > "Z") AND (CH\$ <> "'") THEN ENDOFWORD = -1
ELSE NEXTWORD\$ = NEXTWORD\$ + CH\$
END IF

```
                START = START + 1
```

WEND
IF NEXTWORD\$ > "" THEN NEWWORD = -1 ELSE NEWWORD = 0 WORDIND $=0$
WHILE (WORDIND < NUMOFWORDS) AND NEWWORD
WORDIND = WORDIND + 1
IF NEXTWORD\$ = WORD\$ (WORDIND) THEN NEWWORD = 0
WEND
IF NOT NEWWORD THEN
WORDTOT (WORDIND) = WORDTOT (WORDIND) + 1

ELSE

' Add new word to list
NUMOFWORDS = NUMOFWORDS + 1
WORD\$ (NUMOFWORDS) = NEXTWORD\$
WORDTOT (NUMOFWORDS) = 1
END IF
WEND
FOR I = 1 TO NUMOFWORDS
PRINT WORDTOT(I); WORD\$(I)
NEXT I

```
13.4
' This program will encrypt a string such that when this
' code is entered, the string will be reproduced.
'
DIM ASCI (30)
INPUT "Enter text: "; ST$
NUMOFCH = 0: I = 1
WHILE (I <= LEN(ST$))
    CH$ = MID$(ST$, I, 1): NUMOFCH = NUMOFCH + 1
    IF CH$ = "\" THEN
        I = I + 1: NEXTCH$ = MID$ (ST$, I, 1)
        IF NEXTCH$ = "\" THEN
                ASCI (NUMOFCH) = ASC (NEXTCH$)
        ELSE
                ASCST$ = MID$(ST$, I, 3)
                ASCI (NUMOFCH) = VAL (ASCST$)
                I = I + 2
        END IF
    ELSE
        ASCI (NUMOFCH) = ASC(CH$) 'Regular character
    END IF
    I = I + I
WEND
' Encrypt code
FOR I = 1 TO NUMOFCH
    CODENUM = 255 - ASCI (I)
    IF (CODENUM >= 32) AND (CODENUM <= 92) THEN
        PRINT CHR$ (CODENUM);
        IF CODENUM = ASC("\") THEN PRINT "\";
    ELSE
            PRINT "\";
            PRINT MID$(STR$ (1000 + CODENUM), 3, 3);
    END IF
NEXT I
```

'3.5
' This program will unscrabmle the numbers 5132, 4735, and
' 8014153 so that the first times the second equals the ' third wit a missing digit.

DIM D(24), E(24)
DATA 5,1,3,2
DATA 4,7,3,5
DATA 8,0,1,4,1,5,3
FOR I = 1 TO 4: READ A(I): NEXT I
FOR I = 1 TO 4: READ B(I): NEXT I
FOR I = 1 TO 7: READ B\$(I): NEXT I
FOR A = 1 TO 4
FOR B $=1$ TO 4
FOR C $=1$ TO 4: D = 10-A $-B-C$
$D=4+3+2+1-A-B-C$
IF A <> B AND B <> C AND A <> C THEN
$S=S+1$
$D(S)=A(A) * 1000+A(B) * 100+A(C) * 10+A(D)$
$E(S)=B(A) * 1000+B(B) * 100+B(C) * 10+B(D)$
END IF
NEXT C
NEXT B
NEXT A
FOR I = 1 TO 24
FOR J = 1 TO 24
$\mathrm{X} \#=\mathrm{D}(\mathrm{I})$ * $\mathrm{E}(\mathrm{J})$
A\$ = LTRIM\$ (STR\$ (X\#))
IF LEN (A\$) $=8$ THEN
FOR K = 1 TO 8
A\$ $(\mathrm{K})=$ MID\$(A\$, $K, 1)$
NEXT K
$\mathrm{B}=1: \mathrm{MATCH}=-1$
WHILE (B <= 7) AND MATCH
$\mathrm{MATCH}=0: \mathrm{A}=1$
WHILE (A <= 8) AND NOT MATCH
IF B\$(B) = A\$(A) THEN A\$(A) = " ": MATCH = -1
$A=A+1$
WEND
$B=B+1$
WEND
IF MATCH THEN PRINT D(I); E(J); " "; A\$
END IF
NEXT J
NEXT I

```
'3.6
' This program will display the front colors on the Rubik's
' Pocket Cube after a move of }T\mathrm{ or }F\mathrm{ is performed.
'
DIM A$ (24)
DATA W,Y,O,G,R,B
FOR I = 1 TO 6: READ A$
    FOR J = 1 TO 4
        S = S + 1: A$(S) = A$
    NEXT J
NEXT I
INPUT "Enter T, F, or Q: "; A$
DO UNTIL A$ = "Q"
    IF A$ = "T" THEN
        Rotate Top
        X$ = A$ (1):A$(1) = A$ (3): A$ (3) = A$ (4)
        A$ (4) = A$ (2) : A$ (2) = X$
        X$ = A$ (5) : A$ (5) = A$ (9) : A$ (9) = A$ (13)
        A$ (13) = A$ (17) : A$ (17) = X$
        X$ = A$ (6): A$ (6) = A$ (10): A$ (10) = A$ (14)
        A$ (14) = A$ (18) : A$ (18) = X$
        ELSE
' Rotate Front
    X$ = A$ (5):A$(5) = A$ (7) : A$ (7) = A$ (8)
    A$ (8) = A$ (6): A$ (6) = X$
    X$ = A$ (3):A$ (3) = A$ (20): A$ (20) = A$ (22)
    A$ (22) = A$ (9) : A$ (9) = X$
    X$ = A$ (4):A$ (4) = A$ (18) : A$ (18) = A$ (21)
    A$ (21) = A$ (11) : A$ (11) = X$
        END IF
' Display front side
        PRINT A$ (5); " "; A$(6)
        PRINT A$(7); " "; A$(8)
        INPUT "Enter T, F, or Q: "; A$
LOOP
```

```
'3.7
' This program will simulate a drill of adding Roman Numerals.
I
CLS
INPUT "Enter name: "; NME$
INPUT "Enter date: "; DAYTE$
'
DATA M,1000,D,500,C,100,L,50,X,10,V,5,I,1
FOR I = 1 TO 7: READ B$(I), B(I): NEXT I
DO UNTIL A$ = "3"
    CLS
    PRINT "1. INSTRUCTION PAGE"
    PRINT "2. PRACTICE 3 PROBLEMS"
    PRINT "3. QUIT"
    A$ = INPUT$ (1)
    SELECT CASE A$
        CASE "1"
            CLS
            PRINT "YOU WILL BE GIVEN 3 PROBLEMS TO"
            PRINT "WORK. A PROBLEM WILL CONSIST OF"
            PRINT "ADDING TWO RANDOMLY GENERATED"
            PRINT "ROMAN NUMERALS LESS THAN 20."
            PRINT "YOU WILL TYPE YOUR ANSWER IN"
            PRINT "ROMAN NUMERALS AND PRESS 'RETURN.'"
            PRINT "(PRESS ANY KEY TO RETURN TO MENU.)"
            AN$ = INPUT$ (1)
        '
        Practice 3 problems
        CASE "2"
            RIGHT = 0: WRONG = 0
            FOR PROB = 1 TO 3
                CLS
                RANDOMIZE TIMER
                X(1) = INT(RND * 19) + 1: X(2) = INT(RND * 19) + 1
                X(3) = X(1) + X(2): HELP = X(3)
                FOR K = 1 TO 3: X$(K) = "": NEXT K
                FOR K = 1 TO 3
                    FOR I = 1 TO 7
                    X = X(K) / B(I)
                    IF (ABS (X - 9 / 5) > .01) OR (I MOD 2 = 1) THEN
                    X = INT (X)
                        SELECT CASE X
                                    CASE 9
                                    X$(K) = X$(K) + B$(I) + B$(I - 2)
                                    CASE 4
                                    X$(K) = X$(K) + B$(I) + B$(I - 1)
                                    CASE IS > 0
                                    FOR J = 1 TO X: X$(K) = X$(K) + B$(I): NEXT J
                                    END SELECT
                                    X(K) = X(K) - B(I) * X
                    END IF
                    NEXT I
            NEXT K
```

```
    Display problem
    LOCATE 10, 15: PRINT X$(1): X = LEN(X$ (1))
    Y = LEN(X$(2)): COL = 15 + (X - Y) - 2
    LOCATE 11, COL: PRINT "+ "; X$(2)
    LOCATE 12, COL: PRINT STRING$(2 + Y, "-"): MISS = -1
    WHILE MISS <> 0
        LOCATE 13, COL: INPUT N$
        '
        Evaluate
        '
        IF N$ = X$ (3) THEN
            RIGHT = RIGHT + 1: MISS = 0
        ELSE
            IF MISS > 0 THEN
                MISS = 0: BEEP: WRONG = WRONG + 1: WR$(WRONG) = N$
                RI$ (WRONG) = X$ (3): RI (WRONG) = HELP
            ELSE
                MISS = 1: BEEP: LOCATE 16, COL: PRINT HELP
                LOCATE 13, COL: PRINT SPACE$(15)
            END IF
        END IF
    WEND
NEXT PROB
'
Progress Report
CLS : PRINT SPACE$(11); "PROGRESS REPORT"
PRINT "DATE: "; DAYTE$
PRINT "NAME: "; NME$
PRINT "NUMBER CORRECT:"; RIGHT
PRINT "NUMBER OF EXERCISES: 3"
PRINT "PERCENT CORRECT:"; INT(RIGHT / 3 * 100 + .5); "%"
PRINT
IF WRONG > O THEN
    LOCATE 15, 1: PRINT "WRONG ANSWER CORRECT ANSWER ARABIC"
    FOR I = 1 TO WRONG
        LOCATE 16 + I, 1: PRINT WR$(I)
        LOCATE 16 + I, 16: PRINT RI$(I)
        LOCATE 16 + I, 32: PRINT RI(I)
    NEXT I
END IF
LOCATE 23, 1: PRINT "PRESS ANY KEY TO RETURN TO MENU.";
AN$ = INPUT$(1)
END SELECT
LOOP
```

'3. 8
' This program will determine the area shared w/2 rectangles.
DIM AB (20, 20), XY(20, 20)
FOR I = 1 TO 4 INPUT "Enter $\mathrm{X}, \mathrm{Y}: ~ " ; ~ X(I), ~ Y(I)$ $X(I)=\operatorname{ABS}(X(I)): Y(I)=A B S(Y(I))$
NEXT I
FOR I = 1 TO 4
INPUT "Enter A, B: "; A(I), B(I)
$\mathrm{A}(\mathrm{I})=\mathrm{ABS}(\mathrm{A}(\mathrm{I})): \mathrm{B}(\mathrm{I})=\mathrm{ABS}(\mathrm{B}(\mathrm{I}))$
NEXT I
'
' Store a 1 in each occupied square of $A B$
'
FOR $I=A(1) \quad T O A(2)$
FOR $\mathrm{J}=\mathrm{B}(4) \mathrm{TO} \mathrm{B}(1)$
$A B(I, J)=1$
NEXT J
NEXT I
'
' Determine area in common (Heighth-1 x Width-1)
'
FOR I = X(1) TO X(2)
FOR J = Y(4) TO Y(1)
IF AB(I, J) = 1 THEN WDTH = WDTH + 1 'Both interior
NEXT J
IF WDTH > 0 THEN HEIGHT = HEIGHT + 1: WDTH2 = WDTH: WDTH = 0
NEXT I
PRINT (HEIGHT - 1) * (WDTH2 - 1)

```
'3.9
' This program will divide 2 big numbers with at most 30 digits.
DIM A(30), B(30),C(30), D(30)
INPUT "Enter first number: "; A$: LENA = LEN(A$)
INPUT "Enter second number:"; B$: LENB = LEN(B$)
L = LENB
' Store digits in arrays
FOR I = LENB TO 1 STEP -1
    B(LENB - I + I) = VAL (MID$ (B$, I, 1))
NEXT I
FOR I = LENB TO 1 STEP -1
    A(LENB - I + I) = VAL (MID$ (A$, I, 1))
NEXT I: K = LENB
    Shift digits of A until portion of A is greater than B
'
ShiftDigits:
    IF L <> LENB THEN
NextShift:
    K = K + 1: IF LENA < K THEN GOTO DisplayRemainder
    FOR I = L TO 1 STEP -1
            A(I + I) = A(I)
        NEXT I
        A(1) = VAL (MID$(A$, K, 1))
        L = L + I
        IF L < LENB THEN PRINT "O"; : GOTO NextShift
        END IF
        IF L <= LENB THEN
            FOR I = LENB TO 1 STEP -1
                IF A(I) > B(I) THEN GOTO DivideAbyB
                IF A(I) <> B(I) THEN GOTO NextShift
            NEXT I
            ' All A(I) = B(I) at this point
        END IF
'
' Divide A by B by subtracting B * J from A
'
DivideAbyB:
    SUBDONE = 0
    DO
        J = J + I
        FOR I = 1 TO LENB
            C(I) = B(I) * J + C
            C = INT(C(I) / 10)
            C(I) = C(I) - C * 10
        NEXT I: C(I) = C: C = 0
        FOR I = 1 TO L
            D(I) = A(I) - C(I) - D
                D = -(D(I) < 0): IF D THEN D(I) = D(I) + 10
    NEXT I
    IF L - LENB = O OR D(L) = 0 THEN
            I = LENB + I
```

```
            DO
                I = I - I
                    IF D(I) < B(I) THEN SUBDONE = - I
            LOOP UNTIL I = I OR D(I) > B(I) OR SUBDONE
        END IF
    LOOP UNTIL SUBDONE
    '
    ' Display J as # of subtractions done
    PRINT USING "#"; J; : L = 0: J = 0
    FOR I = LENB TO 1 STEP -1
        IF D(I) > O OR T > O THEN
            T = I: L = L + I: A(I) = D(I)
    END IF
    NEXT I: T = 0: GOTO ShiftDigits
'
' Display remainder
'
DisplayRemainder:
    PRINT " Remainder ";
    FOR I = L TO 1 STEP -1
        PRINT USING "#"; A(I);
    NEXT I
    IF L = O THEN PRINT "O"
```

```
'3.10
' This program will generate random mazes with 3 x 5 paths.
CLS : RANDOMIZE TIMER: L = 8: W = 5
NUMOFLINES = (L - I) * (W - I) '# of lines to draw
LI = INT(32 / L)
WI = INT(15 / W)
LN = L: WN = W
DIM A(LN + 1, WN + 1) 'Points forbidden to start from
DIM PINT(33, 33) 'Existing points
' Draw perimeter
FOR I = 1 TO 33: PRINT "*"; : PINT(I - 1, 0) = 1: NEXT I
FOR I = 1 TO 14
    LOCATE I + 1, 1: PRINT "*": PINT(0, I) = 1
    LOCATE I + 1, 33: PRINT "*": PINT(L, I) = 1
NEXT I
FOR I = 1 TO 33: PRINT "*"; : PINT(I - 1, W) = 1: NEXT I
'
A(0, 0) = 1:A(LN, 0) = 1:A(LN, WN) = 1:A(0, WN) = 1
DO
    DO
    ' Get point that exists but is not forbidden
        X = INT(RND * 2 * LN) - INT(LN / 2)
        Y = INT(RND * 2 * WN) - INT(WN / 2)
        IF X < O THEN X = 0
        IF X > LN THEN X = LN
        IF Y < O THEN Y = 0
        IF Y > WN THEN Y = WN
    LOOP UNTIL (PINT (X, Y) = 1 AND A(X, Y) = 0)
    DO
        D = INT(RND * 4) 'Random direction
        SEGMENTDRAWN = 0: NUMOFTRIES = 0
        DO
            NUMOFTRIES = NUMOFTRIES + 1
            D = D + 1: IF D > 4 THEN D = D - 4
            SELECT CASE D
                I
                ' Up
                '
                CASE 1
                    IF Y > 0 THEN
                    IF PINT(X, Y - 1) = 0 THEN
                    FOR J = 0 TO WI - 1
                    LOCATE Y * WI - J, X * LI + 1: PRINT "*"
                    NEXT J
                    A = X: B = Y - 1: SEGMENTDRAWN = -1
                    END IF
                END IF
                '
                Right
                CASE 2
                    IF X < LN THEN
```

```
            IF PINT(X + 1, Y) = 0 THEN
                        FOR J = 0 TO LI - 1
                        LOCATE Y * WI + 1, X * LI + 2 + J: PRINT "*"
                    NEXT J
                        A = X + 1: B = Y: SEGMENTDRAWN = -1
                    END IF
            END IF
            Down
                CASE 3
            IF Y < WN THEN
                IF PINT(X, Y + 1) = 0 THEN
                    FOR J = 0 TO WI - 1
                    LOCATE Y * WI + 2 + J, X * LI + 1: PRINT "*"
                    NEXT J
                    A = X: B = Y + 1: SEGMENTDRAWN = -1
            END IF
            END IF
            Left
            CASE 4
            IF X > 0 THEN
                IF PINT(X - 1, Y) = 0 THEN
                    FOR J = 0 TO LI - 1
                    LOCATE Y * WI + 1, X * LI - J: PRINT "*"
                    NEXT J
                    A = X - 1: B = Y: SEGMENTDRAWN = -1
                    END IF
            END IF
            END SELECT
        LOOP UNTIL SEGMENTDRAWN OR (NUMOFTRIES = 4)
            '
            IF SEGMENTDRAWN THEN
            PINT(A, B) = 1: LINESDRAWN = LINESDRAWN + 1
                    X = A: Y = B
            ELSE
                    A(X, Y) = 1
            END IF
        LOOP UNTIL (LINESDRAWN = NUMOFLINES) OR NOT SEGMENTDRAWN
    LOOP UNTIL (LINESDRAWN = NUMOFLINES)
I
    Open doors
X = INT(RND * WN) + 1: Y = INT(RND * WN) + 1
FOR J = O TO WI - 2
    LOCATE X * WI - J, 1: PRINT " "
    LOCATE Y * WI - J, 33: PRINT " "
NEXT J
LOCATE 23
```


FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '88 BASIC PROGRAM SOLUTIONS

'1.1
' This program clears the screen and prints a phrase
CLS
FOR I = 1 TO 10
PRINT "THE BEST COMPUTER CONTEST!"
NEXT I
'1.2
' This program determines if a given input is integer or real. '
INPUT "Enter \#:"; NUM
IF NUM = INT (NUM) THEN PRINT "INTEGER" ELSE PRINT "REAL"

```
'1.3
```

' This program calculates the number of bytes on N diskettes. '

INPUT "Enter N: "; N
PRINT N * 40 * 8 * 512
'1.4
' This program prints the computer component missing.
'

INPUT "Enter component:"; A\$
INPUT "Enter component:"; B\$
INPUT "Enter component:"; C\$
INPUT "Enter component:"; D\$
DATA CPU, PRIMARY,SECONDARY,INPUT,OUTPUT
FOR I = 1 TO 5
READ E\$
IF NOT (A\$ = E\$ OR B\$ = E\$ OR C\$ = E\$ OR D\$ = E\$) THEN
PRINT E\$: END
END IF
NEXT I

```
'1.5
' This program displays 4 rectangles of asterisks with #s.
I
CLS
FOR I = 1 TO 79: PRINT "*"; : NEXT I
FOR I = 2 TO 23
    LOCATE I, 1: PRINT "*"
    LOCATE I, 40: PRINT "*"
    LOCATE I, 79: PRINT "*"
NEXT I
LOCATE 12, 1: FOR I = 1 TO 79: PRINT "*"; : NEXT I
LOCATE 24, 1: FOR I = 1 TO 79: PRINT "*"; : NEXT I
' Place numbers in center of rectangles
LOCATE 6, 20: PRINT 1
LOCATE 6, 60: PRINT 2
LOCATE 18, 20: PRINT 3
LOCATE 18, 60: PRINT 4
'1.6
' This program displays the acronym for a given set of words.
INPUT "Enter words:"; A$
PRINT MID$(A$, 1, 1);
FOR I = 2 TO LEN(A$)
    MD$ = MID$ (A$, I, 1)
    IF MD$ = " " THEN PRINT MID$(A$, I + 1, 1); : I = I + 1
NEXT I
'1.7
' This program will display 3 computer names in order of size.
INPUT "Enter name:"; N1$
INPUT "Enter type:"; T1$
INPUT "Enter name:"; N2$
INPUT "Enter type:"; T2$
INPUT "Enter name:"; N3$
INPUT "Enter type:"; T3$
IF T1$ = "MICRO" THEN PRINT N1$
IF T2$ = "MICRO" THEN PRINT N2$
IF T3$ = "MICRO" THEN PRINT N3$
IF T1$ = "MINI" THEN PRINT N1$
IF T2$ = "MINI" THEN PRINT N2$
IF T3$ = "MINI" THEN PRINT N3$
IF T1$ = "MAINFRAME" THEN PRINT N1$
IF T2$ = "MAINFRAME" THEN PRINT N2$
IF T3$ = "MAINFRAME" THEN PRINT N3$
```

```
'1.8
' This program will count the number of cans to be stacked.
'
INPUT "Enter N: "; N
FOR I = N TO 1 STEP - 2
    SUM = SUM + I
NEXT I
PRINT SUM
'1.9
' This program simulates a queue w/options: ADD, TAKE, QUIT.
\prime
INPUT "Enter command:"; IN$
WHILE IN$ <> "QUIT"
    IF IN$ = "ADD" THEN
        MAX = MAX + 1: INPUT "Enter integer:"; A(MAX)
        ELSE
            IF IN$ = "TAKE" THEN
            MIN = MIN + 1: PRINT A(MIN)
        END IF
    END IF
    INPUT "Enter command:"; IN$
WEND
'1.10
' This program determines events of history between dates.
'
DATA 1642,"BLAISE PASCAL","ADDING MACHINE"
DATA 1801,"JOSEPH JACQUARD","PUNCHCARD AND WEAVING LOOM"
DATA 1830,"CHARLES BABBAGE","DESIGN OF ANALYTIC ENGINE"
DATA 1890,"HERMAN HOLLERITH","PUNCHCARD TABULATING MACHINE"
DATA 1944,"HOWARD AIKEN","MARK I"
DATA 1946,"ECKERT AND MAUCHLY","ENIAC"
DATA 1949,"VON NEUMAN","EDVAC"
'
INPUT "Enter years: "; Y1, Y2
FOR I = 1 TO 7
    READ DAT, NAM$, INV$
    IF Y1 <= DAT AND DAT <= Y2 THEN PRINT NAM$; " INVENTED "; INV$
NEXT I
```

```
'2.1
' This program displays a solid diamond of asterisks.
'
INPUT "Enter N: "; N
FOR I = 1 TO N STEP 2
        PRINT SPACE$((N - I) / 2);
        FOR J = 1 TO I: PRINT "*"; : NEXT J: PRINT
NEXT I
'
FOR I = N - 2 TO 1 STEP - 2
        PRINT SPACE$((N - I) / 2);
        FOR J = 1 TO I: PRINT "*"; : NEXT J: PRINT
NEXT I
'2. 2
' This program determines the efficiency order of 3 sorts.
INPUT "Enter N: "; N
B = N * (N - 1) / 2: B$ = "BUBBLE SORT"
S = N * (LOG(N) / LOG(2)) ^ 2: S$ = "SHELL SORT"
Q = N * (LOG(N) / LOG(2)): Q$ = "QUICK SORT"
IF B < S AND B < Q THEN
        PRINT B$
        IF S < Q THEN PRINT S$ ELSE PRINT Q$
        IF S < Q THEN PRINT Q$ ELSE PRINT S$
        END
ELSE
        IF S < Q THEN
            PRINT S$
            IF B < Q THEN PRINT B$ ELSE PRINT Q$
            IF B < Q THEN PRINT Q$ ELSE PRINT B$
            END
        ELSE
            PRINT Q$
            IF B < S THEN PRINT B$ ELSE PRINT S$
            IF B < S THEN PRINT S$ ELSE PRINT B$
        END IF
END IF
```

```
'2. 3
' This program determines the number of people in a group.
'
DEFINT A-Z
DIV(I) = 2: RE(1) = 1
DIV(2) = 3: RE(2) = 2
DIV(3) = 5: RE(3) = 1
DIV(4) = 7: RE(4) = 2
FOR NUM = 1 TO 200
    GOOD = -1
    FOR I = 1 TO 4
        IF NUM MOD DIV(I) <> RE(I) THEN GOOD = 0
    NEXT I
    IF GOOD THEN PRINT NUM: END
NEXT NUM
'2.4
' This program generates 5 random numbers between 0 and 9999.
INPUT "Enter seed:"; SEED
FOR I = 1 TO 5
    PROD# = SEED * SEED
    PROD$ = MID$(STR$ (PROD#), 2)
    DIGITS = LEN(PROD$)
    IF DIGITS < 8 THEN
' **** Pad 0's to make 8 digit # ****
            FOR J = 1 TO 8 - DIGITS
                PROD$ = PROD$ + "0"
            NEXT J
        END IF
'
    SEED = VAL (MID$ (PROD$, 3, 4))
    PRINT SEED
NEXT I
'2.5
' This program checks to see if data trasmitted is Correct.
'
INPUT "Enter bits:"; BIT$
INPUT "Enter parity:"; PAR$
IF LEN(BIT$) <> 8 THEN PRINT "ERROR": END
FOR I = 1 TO 8
    MD$ = MID$ (BIT$, I, I)
    IF MD$ <> "O" AND MD$ <> "1" THEN PRINT "ERROR": END
    SUM = SUM + VAL (MD$)
NEXT I
' ERROR if even but odd parity; or if odd but even parity
IF SUM MOD 2 = 0 AND PAR$ <> "EVEN" THEN PRINT "ERROR": END
IF SUM MOD 2 = 1 AND PAR$ <> "ODD" THEN PRINT "ERROR": END
PRINT "CORRECT"
```

```
'2.6
' This program will calculate the area of a polygon.
INPUT "Enter n: "; N
FOR I = 1 TO N
    INPUT "Enter vertex: "; X(I), Y(I)
NEXT I
X(N + 1) = X(1): Y(N + 1) = Y(1)
FOR I = 1 TO N
    SUM = SUM + X(I) * Y(I + 1) - Y(I) * X(I + 1)
NEXT I
PRINT USING "AREA = ##.#"; ABS(SUM) / 2
'2.7
', This program displays the date before/after a given date.
INPUT "Enter month, day, year: "; MONTH, DAY, YEAR
DIM MO(12)
FOR I = 1 TO 12: READ MO(I): NEXT I
DATA 31,28,31,30,31,30,31,31,30,31,30,31
D1 = DAY - 1: D2 = DAY + 1: M1 = MONTH: M2 = MONTH
Y1 = YEAR: Y2 = YEAR
IF Y1 MOD 4 = 0 AND Y1 MOD 100 > 0 THEN LEAP = -1
IF LEAP AND M1 = 3 AND D1 = 0 THEN LEAP1 = 1
IF LEAP AND M2 = 2 AND D2 = 29 THEN LEAP2 = 1
'
IF D1 = 0 THEN
    M1 = M1 - 1
    IF M1 > 0 THEN D1 = MO(M1) + LEAP1
    IF M1 = 0 THEN M1 = 12: D1 = MO(M1): Y1 = Y1 - 1
ELSE
    IF D2 > MO(M2) + LEAP2 THEN
        M2 = M2 + 1: D2 = 1
        IF M2 > 12 THEN M2 = 1: Y2 = Y2 + 1
    END IF
END IF
'
PRINT LTRIM$(STR$(M1));
PRINT "-"; LTRIM$(STR$(D1)); "-"; LTRIM$(STR$(Y1))
PRINT LTRIM$(STR$(M2));
PRINT "-"; LTRIM$(STR$(D2)); "-"; LTRIM$(STR$(Y2))
```

```
'2.8
' This program displays a student's Cumulative G. P. Ave.
'
SEM = 1
WHILE SEM <= 8
    TOTAL = 0: HRSTOT = 0
    FOR I = 1 TO 4
        INPUT "Enter grade, credits:"; GR$, HRS
        POYNTS = 4 - (ASC(GR$) - 65) ' }\textrm{A}=4\quad\textrm{B}=3\quad\textrm{C}=2 D=1 F=-
        IF POYNTS = -1 THEN POYNTS = 0 ' F=-1 becomes F=0
        TOTAL = TOTAL + POYNTS * HRS
        HRSTOT = HRSTOT + HRS
    NEXT I
'
    GPA = TOTAL / HRSTOT
    PRINT USING " GPA= #.###"; GPA
    CUMTOTAL = CUMTOTAL + TOTAL: CUMHRS = CUMHRS + HRSTOT
    CGPA = CUMTOTAL / CUMHRS
    PRINT USING "CGPA= #.###"; CGPA
    IF CGPA < 1 THEN DIS = -1
    IF CGPA < 2 AND LASTCGPA < 2 AND SEM > 1 THEN DIS = -1
    IF DIS THEN PRINT "STUDENT IS DISMISSED": END
    LASTCGPA = CGPA
    SEM = SEM + 1
WEND
```

```
'2.9
' This program displays 2 elements that form a battery.
'
DATA "LITHIUM ",+3.05
DATA "SODIUM ",+2.71
DATA "ZINC ",+0.76
DATA "IRON ",+0.44
DATA "TIN ",+0.14
DATA "IODINE ",-0.54
DATA "SILVER ",-0.80
DATA "MERCURY ",-0.85
DATA "BROMINE ",-1.09
DATA "CHLORINE",-1.36
FOR I = 1 TO 10: READ ELEM$(I), POT(I): NEXT I
'
INPUT "Enter Desired Voltage, Tolerance: "; VOLT, TOL
'
FOR I = 1 TO 10
    FOR J = 1 TO 10
        DIF = POT(I) - POT(J)
        IF DIF >= VOLT - TOL AND DIF <= VOLT + TOL THEN
            COUNT = COUNT + 1
            IF COUNT = 1 AND DISPLAY > 0 THEN
                            PRINT "PRESS ANY KEY FOR MORE": A$ = INPUT$(1): PRINT
                    END IF
                        PRINT ELEM$(I) ; " "; ELEM$(J) ; " ";
            PRINT USING "#.##"; DIF
            DISPLAY = 1
        END IF
        IF COUNT = 8 THEN PRINT : COUNT = 0
    NEXT J
NEXT I
IF DISPLAY = 0 THEN PRINT "NO BATTERY CAN BE FORMED"
```

```
'2.10
' This program will keep score for a double dual race.
CLS : DIM IN$ (21)
FOR I = 1 TO 21
    PRINT "Place "; I; ":"; : INPUT IN$(I)
    IF I > 1 THEN
            J = 1
            WHILE J <= TN AND INIT$(J) <> IN$(I): J = J + 1: WEND
        END IF
        IF (INIT$(J) <> IN$ (I)) OR (I = I) THEN
            TN = TN + 1: INIT$(TN) = IN$(I)
        END IF
NEXT I
            Assert TEAM$(1, 2, 3) = 3 unique team INITIALS
FOR I = 1 TO 2
    FOR J = I + 1 TO 3
        PL = 0: T1 = 0: T2 = 0: T1PL=0: T2PL=0
        FOR K = 1 TO 21
            IF IN$(K) = INIT$(I) THEN
            PL = PL + 1: T1 = T1 + PL: T1PL = T1PL + 1
            TEAM1 (T1PL) = PL
                END IF
                IF IN$ (K) = INIT$(J) THEN
                PL = PL + 1: T2 = T2 + PL: T2PL = T2PL + 1
                TEAM2(T2PL) = PL
                END IF
            NEXT K
            T1 = T1 - TEAM1 (6) - TEAM1 (7)
            T2 = T2 - TEAM2 (6) - TEAM2 (7)
            PRINT "TEAM "; INIT$(I); ":"; TI; " POINTS"
            PRINT "TEAM "; INIT$(J); ":"; T2; " POINTS"
            IF (T1 < T2) OR (T1 = T2 AND TEAM1 (6) < TEAM2 (6)) THEN
            PRINT "TEAM "; INIT$(I);
        ELSE
            PRINT "TEAM "; INIT$(J) ;
        END IF
        PRINT " WINS!": PRINT
    NEXT J
NEXT I
```

'3.1
' This program puts a set of real numbers in numerical order.
INPUT "Enter N: "; N
FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{N}$
INPUT "Enter \#: "; A(I)
NEXT I
DATA $0,8,1,2,5,4,3,9,7,6$
FOR I = 0 TO 9: READ PLACE: ORDER (PLACE) = I: NEXT I
' *** replace digits in duplicated number
FOR I = 1 TO N
NUM\$ $=\operatorname{STR} \$(A(I))$
FOR J = 1 TO LEN (NUM\$)
MD\$ = MID\$ (NUM\$, J, 1)
$\mathrm{NUM}=\mathrm{VAL}(\mathrm{MD} \$)$
IF NUM > 0 OR MD\$ = "0" THEN
NUM2 = ORDER (NUM)
MID\$ (NUM\$, J, 1) = MID\$ (STR\$ (NUM2) , 2)
END IF
NEXT J
$B(I)=$ VAL (NUM\$)
NEXT I
' *** sort according to numbers with replaced digits *** FOR I $=1 \mathrm{TO} \mathrm{N}-1$

FOR $J=I+1 \mathrm{TO} \mathrm{N}$
IF $B(I)>B(J)$ THEN SWAP $B(I), B(J): S W A P A(I), A(J)$
NEXT J
NEXT I
FOR I = 1 TO N: PRINT LTRIM\$ (STR\$ (A(I))) : NEXT I

```
'3.2
' This program displays total number of ways to make change.
DEFINT B-Z
INPUT "Enter AMOUNT: "; AMOUNT
MAXQ = INT(AMOUNT * 4)
MAXD = INT (AMOUNT * 10)
MAXN = INT (AMOUNT * 20)
FOR Q = O TO MAXQ
    FOR D = 0 TO MAXD - INT (2.5 * Q)
        FOR N = 0 TO MAXN - 5 * Q - 2 * D
                COUNT = COUNT + 1
            NEXT N
        NEXT D
NEXT Q
PRINT COUNT
```

```
'3.3
' This program determines if a point/box is inside a 2nd box.
INPUT "Enter point: "; PX, PY, PZ
INPUT "Enter cube1 diagonal point1: "; C1X1, C1Y1, C1Z1
INPUT "Enter cube1 diagonal point2: "; C1X2, C1Y2, C1Z2
INPUT "Enter cube2 diagonal point1: "; C2X1, C2Y1, C2Z1
INPUT "Enter cube2 diagonal point2: "; C2X2, C2Y2, C2Z2
A = C1X1: B = C1X2: GOSUB MinOfAandB: C1MINX = MIN
A = C1Y1: B = C1Y2: GOSUB MinOfAandB: C1MINY = MIN
A = C1Z1: B = C1Z2: GOSUB MinOfAandB: C1MINZ = MIN
A = C2X1: B = C2X2: GOSUB MinOfAandB: C2MINX = MIN
A = C2Y1: B = C2Y2: GOSUB MinOfAandB: C2MINY = MIN
A = C2Z1: B = C2Z2: GOSUB MinOfAandB: C2MINZ = MIN
A = C1X1: B = C1X2: GOSUB MaxOfAandB: C1MAXX = MAX
A = C1Y1: B = C1Y2: GOSUB MaxOfAandB: C1MAXY = MAX
A = C1Z1: B = C1Z2: GOSUB MaxOfAandB: C1MAXZ = MAX
A = C2X1: B = C2X2: GOSUB MaxOfAandB: C2MAXX = MAX
A = C2Y1: B = C2Y2: GOSUB MaxOfAandB: C2MAXY = MAX
A = C2Z1: B = C2Z2: GOSUB MaxOfAandB: C2MAXZ = MAX
PRINT "POINT ";
IF PX < C2MINX OR PY < C2MINY OR PZ < C2MINZ THEN
    PRINT "DOES NOT LIE";
ELSE
    IF PX > C2MAXX OR PY > C2MAXY OR PZ > C2MAXZ THEN
        PRINT "DOES NOT LIE";
    ELSE
        PRINT "LIES";
    END IF
END IF
PRINT " INSIDE 2ND CUBE"
'
PRINT "1ST CUBE ";
IF C1MINX < C2MINX OR C1MINY < C2MINY OR C1MINZ < C2MINZ THEN
    PRINT "DOES NOT LIE";
ELSE
        IF C1MAXX > C2MAXX OR C1MAXY > C2MAXY OR C1MAXZ > C2MAXZ THEN
        PRINT "DOES NOT LIE";
        ELSE
            PRINT "LIES";
        END IF
END IF
PRINT " INSIDE 2ND CUBE"
END
    '*** SUBROUTINE to determine MIN of A and B
MinOfAandB:
    IF A <= B THEN MIN = A ELSE MIN = B
    RETURN
'*** SUBROUTINE to determine MAX of A and B
MaxOfAandB:
    IF A >= B THEN MAX = A ELSE MAX = B
    RETURN
```

```
'3.4
' This program produces an alphabetical list of permutations.
    **** Note: QBASIC has recursive capabilities, but this is
                a way to do permutations without recursion.
    Also, this is an example of old BASIC (with line #s/branching).
    DIM PERM$ (720)
20 INPUT "Enter letters:"; A$: L = LEN(A$)
30 FOR I = 1 TO L: B$(I) = MID$(A$, I, 1): NEXT I: I = L
40 ON I GOTO 20, 90, 80, 70, 60, 50
50 FOR N6 = 1 TO 6: H = 5: GOSUB 340
60 FOR N5 = 1 TO 5: H = 4: GOSUB 340
70 FOR N4 = 1 TO 4: H = 3: GOSUB 340
80 FOR N3 = 1 TO 3: H = 2: GOSUB 340
90 FOR N2 = 1 TO 2
100 SWAP B$(I), B$(I - 1): TOTAL = TOTAL + 1
110 FOR J = 1 TO L
120 PERM$ (TOTAL) = PERM$ (TOTAL) + B$ (J)
130 NEXT J
140 NEXT N2: IF I = 2 THEN 190
150 NEXT N3: IF I = 3 THEN 190
160 NEXT N4: IF I = 4 THEN 190
170 NEXT N5: IF I = 5 THEN 190
180 NEXT N6
190 '*** INSERTION SORT ***
200 FOR I = 2 TO TOTAL
210 IND = I
220 WHILE PERM$(IND) < PERM$(IND - 1) AND IND > 1
230 SWAP PERM$(IND), PERM$(IND - 1): IND = IND - 1
240 WEND
250 NEXT I
260 '
270 FOR I = 1 TO TOTAL 'With QBASIC,
280 IF PERM$(I) = PERM$(I - 1) THEN 300 '<==This can be written
290 PRINT PERM$(I): TOTAL2 = TOTAL2 + 1 'using IF/END IF
3 0 0 ~ N E X T ~ I ~ ' i n s t e a d ~ o f ~ b r a n c h i n g .
310 PRINT "TOTAL="; TOTAL2
320 END
330 ' ***** SUBROUTINE *****
340 Z$ = B$(I - H)
350 FOR J = I - H TO I - I
360 B$(J) = B$ (J + 1)
3 7 0 ~ N E X T ~ J ~
380 B$(I) = Z$
390 RETURN
```

```
13. 5
' This program will control the movements of a snake.
'
CLS : DIM A \((25,81)\)
\(\mathrm{V}=12: \mathrm{H}=8:\) LOCATE \(\mathrm{V}, \mathrm{H}\)
FOR I = 8 TO 32
    PRINT "*"; : A (V, I) = 1
    A\$ = A\$ + "12": B\$ = B\$ + RIGHT\$ (STR\$ (I), 2)
NEXT I
WHILE D\$ = "": D\$ = INKEY\$: WEND: C\$ = D\$
DO UNTIL C\$ = CHR\$ (27)
    FOR I = 1 TO 100
        D\$ = INKEY\$: IF D\$ \(<>\) "" THEN C\$ = D\$
    NEXT I
    IF C\$ = "I" THEN V = V - I
    IF C\$ = "M" THEN V = V + 1
    IF C \(=\) "J" THEN H \(=\mathrm{H}-1\)
    IF C\$ = "K" THEN H = H + 1
    IF \(A(V, H) O R V=0 O R V=25 O R H=0 O R H=81\) THEN END
    \(A(V, H)=1:\) LOCATE \(V, H: P R I N T\) "*"
    \(\mathrm{X}=\mathrm{VAL}(\mathrm{RIGHT}(\mathrm{A}, ~ 2)): \mathrm{Y}=\operatorname{VAL}(\mathrm{RIGHT}(\mathrm{B} \$, 2))\)
    LOCATE \(\mathrm{X}, \mathrm{Y}: ~ P R I N T\) " "
    \(A(X, Y)=0\)
    A\$ \(=\operatorname{LEFT}(\mathrm{A} \$, 24 * 2): \mathrm{B} \$=\operatorname{LEFT}(\mathrm{B} \$, 24 * 2)\)
    A\$ \(=\) RIGHT\$ (STR\$ (V) , 2) + A\$
    B\$ \(=\) RIGHT\$ (STR\$ (H) , 2) + B\$
LOOP
```

```
'3.6
' This program will solve two linear equations.
INPUT "Enter equation 1: "; E1$
INPUT "Enter equation 2: "; E2$
'
' Determine coeficients A1,B1,C1 and A2,B2,C2
EQ$ = E1$: ST = 1: GOSUB ParseEq: : A1 = VAAL
EQ$ = E1$: GOSUB ParseEq: : B1 = VAAL
EQ$ = E1$: GOSUB ParseEq: : C1 = VAAL
EQ$ = E2$: ST = 1: GOSUB ParseEq: : A2 = VAAL
EQ$ = E2$: GOSUB ParseEq: : B2 = VAAL
EQ$ = E2$: GOSUB ParseEq: : C2 = VAAL
' Compute solution if it exists
'
DEN = A1 * B2 - A2 * B1
NUMX = C1 * B2 - C2 * B1
NUMY = A1 * C2 - A2 * C1
IF DEN = O THEN PRINT "NO UNIQUE SOLUTION EXISTS.": END
PRINT "XSOLUTION= ";
IF NUMX / DEN < O THEN
    PRINT USING "##.#"; NUMX / DEN;
ELSE
    PRINT USING "#.#"; NUMX / DEN;
END IF
PRINT " YSOLUTION= ";
IF NUMY / DEN < O THEN
    PRINT USING "##.#"; NUMY / DEN
ELSE
    PRINT USING "#.#"; NUMY / DEN
END IF
END
    Find Starting position ST of value
ParseEq:
    SYGN = 1 'Default to 1 (positive for unsigned #s)
    MD$ = "="
    WHILE MD$ = "="
        MD$ = MID$(EQ$, ST, 1)
            IF MD$ = "X" THEN VAAL = 1: ST = ST + 1: RETURN
            IF MD$ = "=" THEN ST = ST + 1
    WEND
    IF MD$ = "+" THEN ST = ST + 1
    IF MD$ = "-" THEN SYGN = -1: ST = ST + 1
'
    Find ending position EN of value
    EN = ST: VAAL = 0: MD$ = MID$ (EQ$, EN, 1): L = LEN (EQ$)
    WHILE EN <= L AND (MD$ <> "X" AND MD$ <> "Y" AND MD$ <> "=")
        MD$ = MID$ (EQ$, EN, 1)
        EN = EN + 1
    WEND
```

```
EN = EN - 1
IF MD$ = "X" OR MD$ = "Y" OR MD$ = "=" THEN EN = EN - 1
IF MD$ = "=" THEN SYGN = -SYGN 'Bring C to other side
IF ST > EN THEN 'No Value
    VAAL = SYGN: ST = ST + I
ELSE 'Determine Value
    MD$ = MID$(EQ$, ST, EN - ST + 1)
    VAAL = SYGN * VAL (MD$): ST = EN + 2
END IF
RETURN
```

'3.7
' This program displays all simi-perfect \#s between 2 and 35.
'
DEFINT A-Z
DIM A (20), B(20)
PRINT "SEMI \# EXAMPLE(S)"
FOR NUM $=2 \mathrm{TO} 34: \operatorname{MAX}=0$
FOR DIV $=1 \mathrm{TO}$ NUM / 2
IF NUM MOD DIV = 0 THEN MAX $=$ MAX $+1: B(M A X)=D I V$
NEXT DIV
FOR B $=2$ TO MAX
$\mathrm{L}=$ MAX: GOSUB Combo
NEXT B
NEXT NUM: END
'
Produce combinations
'
Combo :
FOR $I=1$ TO B: $A(I)=B-I+1: N E X T I$
$A(1)=A(1)-1: N=1$
1
WHILE $\mathrm{N}<=\mathrm{B}$
$A(N)=A(N)+1$
FOR $I=N-1$ TO 1 STEP - $1: A(I)=A(I+1)+1: N E X T I$
IF $A(N)<=L-N+1$ THEN
SUM $=0:$ FOR $I=1$ TO B: $S U M=S U M+B(A(I)): N E X T I$
IF SUM $=$ NUM THEN
PRINT USING "\#\#"; NUM; : PRINT SPACE\$ (5) ; B(A (B)) ;
FOR I = B - 1 TO 1 STEP - 1
PRINT "+"; B(A(I));
NEXT I: PRINT
END IF
$\mathrm{N}=0$
END IF
$N=N+1$
WEND
RETURN

```
'3.8
' This program will keep score for a bowler.
DIM A(10, 3): CLS
INPUT "Enter frames:"; F$: F$ = F$ + " "
FOR I = 1 TO 10
    COMMAPOS = INSTR(F$, " ")
    A$ (I) = MID$ (F$, 1, COMMAPOS - 1)
    F$ = MID$(F$, COMMAPOS + 1, LEN(F$) - COMMAPOS)
NEXT I
PRINT
PRINT "-1- -2- -3- -4- -5- -6- -7- -8- -9- -10-"
PRINT "---!---!---!---!---!---!----!---!---------"
FOR I = 1 TO 10
    PRINT SPACE$(3 - LEN(A$(I))) ; A$ (I) ; "!";
NEXT I
PRINT
' Assign values to A FRames according to X, /, or pins
'
FOR FR = 1 TO 10
    L = LEN (A$ (FR))
    FOR J = 1 TO L
        MD$ = MID$ (A$ (FR), J, 1)
        IF MD$ = "X" THEN
            A(FR, J) = 10: LOOK(FR) = 2
        ELSE
            IF MD$ = "/" THEN
                A(FR, J) = 10-A(FR, J - 1): LOOK(FR) = 1
            ELSE
                A(FR, J) = VAL (MD$)
            END IF
        END IF
    NEXT J
NEXT FR
' Determine FRame values with LOOK ahead
'
FOR FR = 1 TO 10
    SUM(FR)=SUM(FR - I) + A (FR, 1) + A (FR, 2)
    IF LOOK(FR) > 0 THEN
        IF LOOK(FR) <= 1 THEN
            *** A spare / needs 1 more value added
                    IF FR = 10 THEN
                        SUM (FR) = SUM (FR) + A(FR, 3)
                    ELSE
                        SUM(FR) = SUM(FR) + A(FR + 1, 1)
            END IF
        ELSE
            *** A strike X needs 2 more values added
        IF FR = 10 THEN
            SUM(FR) = SUM(FR) + A(FR, 3)
        ELSE
            SUM(FR) = SUM(FR) + A(FR + 1, 1) + A(FR + 1, 2)
            IF FR <> 9 THEN
```

```
IF A(FR + 1, 1) = 10 THEN
    SUM(FR) = SUM (FR) + A(FR + 2, 1)
END IF
                END IF
            END IF
        END IF
    END IF
    ' *** Print FRame's value ***
        SUM$ = MID$(STR$(SUM (FR)), 2)
        PRINT SUM$; SPACE$(3 - LEN (SUM$)); "!";
NEXT FR
PRINT : PRINT STRING$(40, "-")
```

13.9
' This program will convert a real from one base to another.
INPUT "Enter M, N, \#: "; M, N, NUM\$
PRINT LEFT\$ (NUM\$, 2) ;
NUM\$ = MID\$ (NUM\$, 3) :
MDIGITS = LEN (NUM\$) 'Digits on right of period(.)
NDIGITS = 1
WHILE (1 / N) ^ NDIGITS > (1 / M) ^ MDIGITS AND NDIGITS < 7
NDIGITS $=$ NDIGITS +1
WEND
' $\mathrm{SUM}=$ Base 10 \# of NUM\$
FOR I = 1 TO MDIGITS
MD\$ = MID\$ (NUM\$, I, 1)
$\mathrm{MD}=\mathrm{ASC}(\mathrm{MD} \$)-48: \mathrm{IF} \mathrm{MD}>9 \mathrm{THEN} \mathrm{MD}=\mathrm{MD}-7$
$S U M=S U M+M D /\left(M^{\wedge} I\right)$
NEXT I
,
' Convert base 10 decimal to Base N fraction
FOR I $=1$ TO NDIGITS +1
SUM $=$ SUM $* \mathrm{~N}: \operatorname{NUM}(I)=I N T(S U M): S U M=S U M-N U M(I)$
NEXT I
' Print fraction with last digit rounded according to NDIGIT+1
'
FOR I = 1 TO NDIGITS - 1
PRINT CHR\$ (48 + NUM (I) - (NUM (I) > 9) * 7) ;
NEXT I
IF NUM (NDIGITS + 1) >= N / 2 THEN NUM (NDIGITS) $=$ NUM (NDIGITS) +1
PRINT CHR\$ (48 + NUM (NDIGITS) - (NUM (NDIGITS) > 9) * 7) ;

```
'3.10
' This program computes the composition of P(Q) and Q(P).
INPUT "Enter to the ORDER of p(x) : "; PORDER
FOR I = PORDER TO 0 STEP -1
    PRINT "Enter coefficient for x**"; I; ": "; : INPUT PCO(I)
NEXT I: PRINT
INPUT "Enter to the ORDER of q(x) : "; QORDER
FOR I = QORDER TO 0 STEP -1
    PRINT "Enter coefficient for x**"; I; ": "; : INPUT QCO(I)
NEXT I
PRINT "P(Q(X))= "; : GOSUB CompPofQ
PRINT
' ***** Swap P and Q to perform Q(P(X)) *****
SWAP PORDER, QORDER
IF PORDER > QORDER THEN MAX = PORDER ELSE MAX = QORDER
FOR I = O TO MAX: SWAP PCO(I), QCO(I): NEXT I
PRINT "Q(P(X))= "; : GOSUB CompPofQ
END
'
***** Compute composition P of Q
CompPofQ:
    COMPORDER = PORDER * QORDER
    FOR I = 1 TO COMPORDER: POFQ(I) = 0: NEXT I
    FOR I = 0 TO PORDER
        IF PCO(I) <> O THEN
            IF I = 0 THEN
                POFQ(0) = PCO(0)
            ELSE
                FOR J = O TO QORDER: PROD (J) = QCO (J) : NEXT J
                    PRODORDER = QORDER
                    IF I <> I THEN
                    FOR IN = 1 TO I - 1
                        FOR J = 0 TO PRODORDER: PROD2 (J) = 0: NEXT J
                        FOR J = 0 TO PRODORDER
                        FOR K = 0 TO QORDER
                        PROD2 (J + K) = PROD2 (J + K) + PROD (J) * QCO (K)
                        NEXT K
                NEXT J
                        PRODORDER = J + K
                FOR L = 0 TO PRODORDER
                        PROD (L) = PROD2 (L) : PROD2 (L) = 0
                                NEXT L
                    NEXT IN
            END IF
            FOR J = 0 TO PRODORDER
                        PROD (J) = PROD (J) * PCO(I)
            NEXT J
            FOR J = PRODORDER TO 0 STEP - 1
                    POFQ(J) = POFQ (J) + PROD (J)
                    NEXT J
            END IF
        END IF
    NEXT I
```

' ***** Print composition ***** FOR I $=$ COMPORDER TO 0 STEP -1

IF I < COMPORDER THEN PRINT " + "; PRINT LTRIM\$ (STR\$ (POFQ (I))) ; "X**"; LTRIM\$ (STR\$ (I)) ; NEXT I
RETURN

FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 89 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program will print an indented phrase on each line.
CLS : P$ = "1989 COMPUTER CONTEST"
FOR I = 1 TO 22: PRINT SPACE$(I); P$: NEXT I
'1.2
' This program will translate gigabytes to megabytes.
INPUT "Enter number of gigabytes:"; G
PRINT G * 1024; "MEGABYTES"
'1.3
' This program displays a word in a backward-L format.
INPUT "Enter word:"; A$
L = LEN (A$)
FOR I = 1 TO L - 1
    PRINT SPACE$ (L - 1) ; MID$(A$, I, 1)
NEXT I
PRINT A$
'1.4
' This program prints a pattern of numbers in pyramid form.
INPUT "Enter N:"; N
FOR I = 1 TO N
    PRINT SPACE$(10 - I) ; : PRINT USING "#"; I;
    IF I > 1 THEN PRINT SPACE$(I * 2 - 3); : PRINT USING "#"; I;
    PRINT
NEXT I
'1.5
' This program corrects dates with A.D. or B.C.
INPUT "Enter date: "; D
INPUT "Enter A.D. or B.C.: "; A$
IF A$ = "B.C." AND D > 4 THEN PRINT D - 4; "B.C.": END
IF A$ = "B.C." THEN PRINT 5 - D; "A.D.": END
PRINT D + 4; "A.D"
```

```
'1.6
' This program will allow a user access with a password.
INPUT "ENTER PASSWORD:"; PSW$
I = 0
WHILE PSW$ <> "ITSME" AND I < 2
    PRINT "INVALID PASSWORD"
    INPUT "ENTER PASSWORD:"; PSW$
    I = I + I
WEND
IF PSW$ = "ITSME" THEN
    PRINT "YOU HAVE ACCESS"
ELSE
    PRINT "YOU ARE TRESPASSING"
END IF
'1.7
' This program will display the best DBMS.
INPUT "Enter N: "; N: MAX = 0
FOR I = 1 TO N
    INPUT "Enter DBMS name: "; D$
    INPUT "Enter convenience, efficiency:"; C, E
    IF C + E > MAX THEN MAX = C + E: NM$ = D$
NEXT I
PRINT NM$; " IS BEST"
'1.8
' This program displays the unique elements of a list.
INPUT "Enter #:"; N: NUM = 0
WHILE N <> -999
    I = 1
    WHILE I <= NUM AND N <> A(I)
            I = I + I
    WEND
    IF I > NUM THEN NUM = I: A(I) = N
    INPUT "Enter #:"; N
WEND
FOR I = 1 TO NUM: PRINT LTRIM$(STR$(A(I))); " "; : NEXT I
PRINT
'1.9
' This program determines how many feet deep of dollar coins
' over Texas is equivalent to a given probability.
'
INPUT "Enter probability:"; PROB
DOLVOL = 1.5 * 1.5 * 3 / 32: TEXASAREA = 262134
TEXASVOL = TEXASAREA * 5280 * 12 * 5280 * 12
INCHDEEP = (PROB / (TEXASVOL / DOLVOL))
PRINT INT(INCHDEEP / 12 + .5); "FEET DEEP"
```

'1.10
' This program will map a logical address to the physical. '
$B(0)=219: L(0)=600$
$B(1)=2300: L(1)=14$
$B(2)=90: \quad L(2)=100$
$B(3)=1327: L(3)=580$
$B(4)=1952: L(4)=96$
INPUT "Enter Seg\#, Address: "; S, A
WHILE S <= 4
IF A > L(S) THEN
PRINT "ADDRESSING ERROR"
ELSE
PRINT B(S) + A END IF
INPUT "Enter Seg\#, Address: "; S, A
WEND

```
'2.1
' This program prints F(x) for a recursive function given x.
'
INPUT "Enter x:"; X
F(1) = 1: F(2) = 1: F(3) = 1
I=3
WHILE I < X
    F(I + I) = (F(I) * F(I - I) + 2) / F(I - 2)
    I = I + I
WEND
PRINT "F("; : PRINT USING "#"; X; : PRINT ")="; F(X)
'2.2
' This program will print the prime factors of a number.
'
INPUT "Enter #:"; NUM
WHILE NUM > 1
    I = 2
    WHILE (NUM MOD I) > 0
        I = I + I
    WEND
    PRINT I;
    NUM = INT(NUM / I)
    IF NUM > 1 THEN PRINT "X";
WEND
'2. 3
' This program will display a word without its vowels.
'
INPUT "Enter word:"; WORD$
VOW$ = "AEIOU"
FOR I = 1 TO LEN(WORD$)
    CH$ = MID$ (WORD$, I, 1)
    IF INSTR(VOW$, CH$) = 0 THEN PRINT CH$;
NEXT I
```

```
'2.4
' This program produces the shortest possible identifiers.
FOR I = 1 TO 6
    INPUT "Enter name: "; A$(I)
NEXT I
FOR I = 1 TO 6
    K = 1: S$ = LEFT$(A$ (I), 1)
    FOR J = 1 TO 6
        WHILE (I <> J) AND S$ = MID$(A$ (J), 1, K) AND (K < LEN(A$(I)))
            K = K + 1
            S$ = S$ + MID$ (A$ (I), K, 1)
        WEND
    NEXT J
    PRINT S$
NEXT I
'2.5
' This program prints the # of distinguishable permutations.
DIM LETTER(26)
INPUT "Enter word:"; WORD$: L = LEN(WORD$)
' Calculate L factorial (assuming all different letters)
NUM = 1
FOR I = 1 TO L: NUM = NUM * I: NEXT I
' Divide out of Num the factorials of the same letters
FOR I = 1 TO L
    LETPOS = ASC(MID$(WORD$, I, 1)) - 64
    LETTER(LETPOS) = LETTER(LETPOS) + 1
    IF LETTER(LETPOS) > 1 THEN NUM = NUM / LETTER(LETPOS)
NEXT I
PRINT NUM
'2.6
' This program underlines parts of a sentence between 2 *'s.
INPUT "Enter sentence:"; SENT$
CLS : PRINT SENT$
UNDER = 0: COL = 0
FOR I = 1 TO LEN(SENT$)
    CH$ = MID$(SENT$, I, 1)
    IF CH$ = "*" THEN
        UNDER = NOT UNDER
        ELSE
            COL = COL + 1
            LOCATE 3, COL: PRINT CH$
            IF UNDER THEN LOCATE 4, COL: PRINT "-"
        END IF
NEXT I
PRINT
```

```
'2.7
' This program will compute an expression containing + - * /.
INPUT "Enter expression:"; ST$: NUMST$ = ""
' Parse first number in Num1 and second number in Num2
FOR I = 1 TO LEN(ST$)
        CH$ = MID$(ST$, I, 1)
        IF INSTR("+-*/", CH$) > 0 THEN
            SYMBOL$ = CH$: NUM1 = VAL(NUMST$): NUMST$ = " "
        ELSE
            NUMST$ = NUMST$ + CH$
        END IF
NEXT I
NUM2 = VAL(NUMST$)
IF SYMBOL$ = "+" THEN PRINT NUM1 + NUM2
IF SYMBOL$ = "-" THEN PRINT NUM1 - NUM2
IF SYMBOL$ = "*" THEN PRINT NUM1 * NUM2
IF SYMBOL$ = "/" THEN PRINT NUM1 / NUM2
```

```
'2.8
```

'2.8
' This program will display the saddle point of a matrix.
' This program will display the saddle point of a matrix.
'
'
DIM MAT (5, 5)
DIM MAT (5, 5)
INPUT "Enter \# Rows, \# Cols:"; ROWS, COLS
INPUT "Enter \# Rows, \# Cols:"; ROWS, COLS
FOR I = 1 TO ROWS
FOR I = 1 TO ROWS
FOR J = 1 TO COLS
FOR J = 1 TO COLS
PRINT USING "Enter Row\#"; I;
PRINT USING "Enter Row\#"; I;
PRINT USING " Col\#"; J;
PRINT USING " Col\#"; J;
INPUT MAT(I, J)
INPUT MAT(I, J)
NEXT J
NEXT J
NEXT I
NEXT I
' Find value smallest in row, largest in column
' Find value smallest in row, largest in column
FOR I = 1 TO ROWS
FOR I = 1 TO ROWS
FOR J = 1 TO COLS
FOR J = 1 TO COLS
SMALL = -1
SMALL = -1
FOR K = 1 TO COLS
FOR K = 1 TO COLS
IF (K <> J) AND (MAT (I, J) >= MAT(I, K)) THEN SMALL = 0
IF (K <> J) AND (MAT (I, J) >= MAT(I, K)) THEN SMALL = 0
NEXT K
NEXT K
IF SMALL THEN
IF SMALL THEN
LARGE = -1
LARGE = -1
FOR K = 1 TO ROWS
FOR K = 1 TO ROWS
IF (K <> I) AND (MAT (I, J) <= MAT(K, J)) THEN LARGE = 0
IF (K <> I) AND (MAT (I, J) <= MAT(K, J)) THEN LARGE = 0
NEXT K
NEXT K
IF LARGE THEN
IF LARGE THEN
PRINT "SADDLE POINT ="; MAT(I, J) ; "AT ROW"; I;
PRINT "SADDLE POINT ="; MAT(I, J) ; "AT ROW"; I;
PRINT "COL"; J
PRINT "COL"; J
END IF
END IF
END IF
END IF
NEXT J
NEXT J
NEXT I

```
NEXT I
```

```
'2.9
' This program will sort a set of dates in increasing order.
'
DIM MO$(12)
DATA JANUARY,FEBRUARY,MARCH,APRIL,MAY,JUNE,JULY,AUGUST
DATA SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER
FOR I = 1 TO 12: READ MO$(I): NEXT I
INPUT "Enter # of dates:"; N
FOR I = 1 TO N
    INPUT "Enter month:"; M$(I)
    INPUT "Enter day: "; D(I)
    INPUT "Enter year: "; Y(I)
    PRINT
' Combine year, month, day (in that order) for sorting
    J = 1
    WHILE (J < 13) AND (M$ (I) <> MO$ (J)): J = J + 1: WEND
    SORT(I) = ((Y(I) * 100) + J) * 100 + D(I)
    INDEX(I) = I
NEXT I
' Sort dates according to values in Sort() and swap index()
FOR I = 1 TO N - 1
    FOR J = I + 1 TO N
        IF SORT(INDEX(I)) > SORT(INDEX(J)) THEN
            SWAP INDEX(I), INDEX(J)
        END IF
    NEXT J
NEXT I
FOR I = 1 TO N
    PRINT M$(INDEX(I)); D(INDEX(I)); Y(INDEX(I))
NEXT I
```

```
'2. 10
' This program displays class grades and the averages.
DIM QIZ(5, 4)
DATA "D. WOOLY","M. SMITH","C. BROWN","R. GREEN","T. STONE"
FOR I = 1 TO 5: READ NAM$ (I) : NEXT I
DATA 100,92,90,90, 55,75,70,65, 94,70,62,70
DATA 90,74,80,85, 85,98,100,70
FOR I = 1 TO 5
    FOR J = 1 TO 4
            READ QIZ(I, J)
        NEXT J
NEXT I
FOR SCR = 1 TO 2
    CLS
    IF SCR = 2 THEN
            PRINT " MS. HEINDEL'S MUSIC CLASS"
            PRINT " FINAL GRADES"
            PRINT " SPRING 1989"
            PRINT
        END IF
        PRINT " NAME Q1 Q2 Q3 Q4";
        IF SCR = 2 THEN PRINT " AVERAGE" ELSE PRINT
        PRINT
'
    FOR I = 1 TO 5
        PRINT NAM$(I); : SUM = 0
        FOR J = 1 TO 4
            PRINT SPACE$(4); : PRINT USING "###"; QIZ(I, J);
            SUM = SUM + QIZ(I, J)
        NEXT J
        IF SCR = 2 THEN PRINT USING " ###.##"; SUM / 4 ELSE PRINT
    NEXT I
    PRINT
    IF SCR = 1 THEN
            PRINT "Enter 5 grades for quiz 4:";
            INPUT QIZ(1, 4), QIZ(2, 4), QIZ(3, 4), QIZ(4, 4), QIZ(5, 4)
        END IF
NEXT SCR
' Display Column averages and class average
PRINT "AVERAGE:"; : TOTAL = 0
FOR I = 1 TO 4
    SUM = 0
    FOR J = 1 TO 5: SUM = SUM + QIZ(J, I): NEXT J
    PRINT USING " ###.##"; SUM / 5;
    TOTAL = TOTAL + SUM
NEXT I
PRINT : PRINT
PRINT USING "CLASS AVERAGE:###.##"; TOTAL / 20
```

```
'3.1
' This program will determine if a word is correctly spelled.
INPUT "Enter word:"; ST$
L = LEN(ST$): CORRECT = -1
'-- Check for E before suffixes ING, IBLE, ABLE
IF L >= 4 THEN
    PART$ = MID$(ST$, L - 2, 3)
    IF PART$ = "ING" AND MID$(ST$, L - 3, 1) = "E" THEN CORRECT = 0
END IF
IF L >= 5 THEN
    PART$ = MID$ (ST$, L - 3, 4)
    IF PART$ = "IBLE" AND MID$(ST$, L - 4, 1) = "E" THEN CORRECT = 0
    IF PART$ = "ABLE" AND MID$(ST$, L - 4, 1) = "E" THEN CORRECT = 0
END IF
'-- Check if IE after C.
PART$ = ST$: I = INSTR(PART$, "IE")
WHILE (I > 0) AND CORRECT
    I = I - 1
    IF I >= 1 THEN IF MID$(PART$, I, 1) = "C" THEN CORRECT = 0
    PART$ = MID$(PART$, I + 3, LEN(PART$) - (I + 2))
    I = INSTR(PART$, "IE")
WEND
'-- Check if EI not after C.
PART$ = ST$: I = INSTR(PART$, "EI")
WHILE (I > 0) AND CORRECT
    CORRECT = 0
    IF I >= 2 THEN IF MID$(PART$, I - 1, 1) = "C" THEN CORRECT = -1
    PART$ = MID$(PART$, I + 3, LEN(PART$) - (I + 2))
    I = INSTR(PART$, "EI")
WEND
'-- Check for 3 consecutive same letters
I = 1
WHILE (I <= L - 2) AND CORRECT
    IF MID$(ST$, I, 1) = MID$(ST$, I + 1, 1) THEN
            IF MID$(ST$, I, 1) = MID$(ST$, I + 2, 1) THEN
                CORRECT = 0
        END IF
    END IF
    I = I + I
WEND
IF CORRECT THEN PRINT "CORRECT" ELSE PRINT "MISSPELLED"
```

```
13.2
' This program finds the positive root of V for an equation.
'
DEF FNC (V) = -23511.9 * V * V + 988686.1 * V - 400943!
DEF FNB (V) = P(I) * V * 9062.599
DEF FNA (V) = P(I) * V * V * V * 14.14 - FNB(V) + FNC(V)
DATA 0.05, 0.7, 10.0, 70.0
FOR I = 1 TO 4: READ P(I): NEXT I
FOR I = 1 TO 5
    IF I = 5 THEN PRINT : INPUT "Enter value for P:"; P(5)
    FOR J = 0 TO 2
            IF SGN(FNA (J)) <> SGN(FNA (J + 1)) AND FNA(J + 1) <> 0 THEN
                LOW = J: HIGH = J + 1
                IF FNA(LOW) > FNA(HIGH) THEN SWAP LOW, HIGH
                WHILE ABS (LOW - HIGH) > .00005
                    MID = (LOW + HIGH) / 2
                    IF FNA (MID) < O THEN LOW = MID ELSE HIGH = MID
                WEND
                MID = SGN (MID) * INT (ABS (MID) * 10000 + .5) / 10000
                PRINT USING "P = ##.##"; P(I);
                PRINT USING " V = #.####"; MID
            END IF
    NEXT J
NEXT I
```

```
'3.3
' This program will magnify an input positive integer.
DATA 123567,36,13457,13467,2346,12467,124567,136,1234567,12346
FOR I = 0 TO 9: READ NUM$(I): NEXT I
INPUT "Enter number:"; N$
INPUT "Enter magnification:"; MAGN
CLS
FOR I = 1 TO LEN (N$)
    N = VAL (MID$ (N$, I, 1))
    COL = (I - 1) * MAGN * 6 + 1
    FOR J = 1 TO LEN (NUM$ (N))
            PART = VAL (MID$ (NUM$ (N), J, I))
            GOSUB DisplayPart
    NEXT J
NEXT I
END
'
DisplayPart:
    SELECT CASE PART
        CASE 1
            LOCATE 1, COL
            FOR K = 1 TO MAGN: PRINT "****"; : NEXT K: PRINT
        CASE 2
            FOR K = 1 TO MAGN * 2 + 1: LOCATE K, COL: PRINT "*": NEXT K
        CASE 3
            FOR K = 1 TO MAGN * 2 + 1
                    LOCATE K, COL + MAGN * 4 - 1: PRINT "*"
                NEXT K
            CASE 4
                LOCATE MAGN * 2 + 1, COL
                FOR K = 1 TO MAGN: PRINT "****"; : NEXT K: PRINT
            CASE 5
                FOR K = MAGN * 2 + 1 TO MAGN * 4 + 1
                    LOCATE K, COL: PRINT "*"
                NEXT K
        CASE 6
            FOR K = MAGN * 2 + 1 TO MAGN * 4 + 1
                    LOCATE K, COL + MAGN * 4 - 1: PRINT "*"
                NEXT K
        CASE 7
            LOCATE MAGN * 4 + 1, COL
                FOR K = 1 TO MAGN: PRINT "****"; : NEXT K: PRINT
        END SELECT
RETURN
```

```
13.4
' This program produces a calendar for a given month/year.
' January 1, }1901\mathrm{ is a Tuesday.
'
DIM MO$(12), DAYSINMO (12)
DATA JANUARY, FEBRUARY,MARCH,APRIL,MAY, JUNE, JULY
DATA AUGUST, SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER
DATA 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
FOR I = 1 TO 12: READ MO$(I): NEXT I
FOR I = 1 TO 12: READ DAYSINMO(I): NEXT I
INPUT "Enter month, year:"; MONTH, YEAR
MD = 2 + INT ((26 - (LEN (MO$ (MONTH)) + 5)) / 2)
CLS : PRINT SPACE$ (MD) ; MO$ (MONTH) ; YEAR
PRINT " S M T T W T T F S |
PRINT " --------------------------------
' Calculate # of days from 1/1/1901 to last day of prior month
DAYS = (YEAR - 1901) * 365 + INT((YEAR - 1901) / 4)
FOR I = 1 TO MONTH - 1
    DAYS = DAYS + DAYSINMO(I)
NEXT I
IF (MONTH > 2) AND (YEAR MOD 4 = 0) THEN DAYS = DAYS + 1
' Determine first day of month
DAY = (DAYS + 1) MOD 7 'Day =0 (Mon), =1 (Tue) ... =6 (Sun)
COL = (DAY + 1) MOD 7 ' Day = 0,1,2,3,4,5,6 Sun,Mon...Sat
IF (MONTH = 2) AND (YEAR MOD 4 = 0) THEN LEAP = 1 ELSE LEAP = 0
' Display month calendar
IF COL > 0 THEN PRINT SPACE$ (COL * 4);
FOR I = 1 TO DAYSINMO (MONTH) + LEAP
    PRINT USING "####"; I;
    COL = (COL + 1) MOD 7
    IF COL = O THEN PRINT
NEXT I
```

13.5
' This program positions 5 queens on the board so none attack.
PRINT "ROWS = 1234 5"
PRINT "----------------"
PRINT "COLUMNS"
COL = 1: ROW = 1: DIMEN = 5
WHILE (COL > 1) OR (ROW < DIMEN + 1)
WHILE (ROW <= DIMEN) AND (COL <= DIMEN)
GOSUB IsQueenSafe
IF SAFETY THEN CONFIG(COL) = ROW: COL = COL + 1: ROW = 1
ELSE ROW $=$ ROW +1

```
            END IF
```

 WEND
 IF (ROW = DIMEN + 1) THEN COL = COL - 1: ROW = CONFIG(COL) + 1
 IF (COL = DIMEN + 1) THEN
 ' Display solution and retreat column
PRINT SPACE\$ (6);
FOR I = 1 TO DIMEN: PRINT USING "\#\#"; CONFIG(I); : NEXT I
PRINT
COL = COL - $1:$ ROW = CONFIG(COL) +1
END IF
WEND
END
' -------- Function Safety returns True if no queen can attack
IsQueenSafe:
SAFETY = -1
FOR I = 1 TO COL - 1
IF (CONFIG(I) + I) $=($ ROW + COL) THEN SAFETY $=0$
IF (CONFIG(I) - I) $=($ ROW - COL) THEN SAFETY $=0$
IF (CONFIG(I) = ROW) THEN SAFETY = 0
NEXT I
RETURN

```
'3.6
' This program prints the product of 2 large integers in Base.
DEFINT A-Z
DIM A(31), B(31), PROD(61)
INPUT "Enter base:"; BAS
INPUT "Enter first integer: "; ASTR$
INPUT "Enter second integer:"; BSTR$
' -- Determine if signs are positive or negative
SIGN = 1
IF MID$(ASTR$, 1, 1) = "-" THEN
    ASTR$ = MID$(ASTR$, 2, LEN(ASTR$) - 1): SIGN = -1
END IF
IF MID$(BSTR$, 1, 1) = "-" THEN
    BSTR$ = MID$(BSTR$, 2, LEN(BSTR$) - 1): SIGN = SIGN * -1
END IF
IF SIGN < O THEN PRINT "-";
' -- Store sgring digits into numerical arrays
LENA = LEN(ASTR$): LENB = LEN(BSTR$)
FOR I = LENA TO 1 STEP -1
    A(LENA - I + 1) = VAL(MID$(ASTR$, I, 1))
NEXT I
FOR I = LENB TO 1 STEP -1
    B(LENB - I + 1) = VAL (MID$(BSTR$, I, 1))
NEXT I
' -- Multiply 2 numbers as a person would, with carries
FOR I = 1 TO LENB
    CARRY = 0
    FOR J = 1 TO LENA
        S = I + J - I
        PROD(S) = PROD(S) + B(I) * A(J) + CARRY
        CARRY = INT(PROD(S) / BAS)
                PROD(S) = PROD(S) - CARRY * BAS
    NEXT J
    IF CARRY > 0 THEN PROD (S + 1) = CARRY
NEXT I
' -- Display product
IF CARRY > 0 THEN PRINT USING "#"; PROD(S + 1);
FOR I = S TO 1 STEP -1: PRINT USING "#"; PROD(I); : NEXT I
'3.7
' This program computes most efficient change without a coin.
INPUT "Enter cost, amount:"; COST, AMOUNT
INPUT "Enter missing coin:"; COIN$
CHANGE = INT((AMOUNT - COST) * 100 + .1)
C$(1) = "QUARTER": C$(2) = "DIME": C$(3) = "NICKEL": C$(4) =
"PENNY"
A(1) = 25: A(2) = 10: A(3) = 5: A(4) = 1
X = CHANGE
ST = 1: EN = 4: GOSUB MakeChange 'Calculate denominations
C = 1
```

```
WHILE (C < 4) AND COIN$ <> C$ (C) : C = C + 1: WEND
SELECT CASE C
    CASE 1
            *** NO quarters ***
                    Determine most efficient way without quarters (C=1)
        X = CHANGE
        ST = 2: EN = 4: GOSUB MakeChange 'Calculate denominations
    CASE 2
                    *** NO dimes
                    Add 2 nickels for every dime
        B(3) = B(3) + B(2) * 2
    CASE 3
        *** NO nickels ***
        IF a nickel then IF at least 1 quarter then
                                    Make 3 dimes and 1 less quarter
                            Else make 5 more pennies with the 1 nickel
        IF B(3) = 1 THEN
            IF B(1) > 0 THEN
                B(2) = B(2) + 3: B(1) = B(1) - 1
            ELSE
                B(4) = B(4) + 5
            END IF
        END IF
END SELECT
'
    Display results
FOR I = 4 TO 1 STEP -1
        IF I <> C THEN
            PRINT USING "# "; B(I);
            IF I = 4 AND B(I) <> 1 THEN
            PRINT "PENNIES"
            ELSE
                    PRINT C$(I); : IF B(I) <> 1 THEN PRINT "S" ELSE PRINT
            END IF
        END IF
NEXT I
PRINT "TOTAL CHANGE RETURNED ="; CHANGE; "CENT";
IF CHANGE <> 1 THEN PRINT "S" ELSE PRINT
END
I
' Determine most efficient change given coins
'
MakeChange:
    FOR I = ST TO EN
        B(I) = INT(X / A(I))
        X = X - B(I) * A(I)
    NEXT I
    RETURN
```

```
'3.8
' This program displays the coordinates of binary rectangles.
DEFINT A-Z
DIM A(6, 7)
' Convert 6 numbers to binary representation
FOR I = 1 TO 6
    INPUT "Enter number:"; NUM
    DEN = 128
    FOR J = 6 TO 0 STEP -1
            DEN = DEN / 2
            A(I, 7 - J) = INT(NUM / DEN)
            NUM = NUM - A(I, 7 - J) * DEN
        NEXT J
NEXT I
PRINT
' Display the 6 row X 7 col grid of 0s and 1s
FOR I = 1 TO 6
        FOR J = 1 TO 7
            PRINT USING "#"; A(I, J);
        NEXT J: PRINT
NEXT I
PRINT
' Find largest solid rectangles of 1s
FOR ROWLEN = 6 TO 2 STEP -1
        FOR COLLEN = 7 TO 2 STEP -1
            FOR ROWST = 1 TO 7 - ROWLEN
                    FOR COLST = 1 TO 8 - COLLEN
                RECT = -1
                FOR I = ROWST TO ROWST + ROWLEN - 1
                    J = COLST
                    WHILE (J <= COLST + COLLEN - 1) AND RECT
                        IF A(I, J) = 0 THEN RECT = 0
                        J = J + 1
                    WEND
                NEXT I
                IF RECT THEN
                            PRINT USING "(#"; ROWST; : PRINT ",";
                            PRINT USING "#"; COLST; : PRINT ")";
                            PRINT USING "(#"; ROWST + ROWLEN - 1; : PRINT ",";
                            PRINT USING "#"; COLST + COLLEN - 1; : PRINT ")"
                    FOR I = ROWST TO ROWST + ROWLEN - 1
                        FOR J = COLST TO COLST + COLLEN - 1
                            A(I, J) = 0
                        NEXT J
                    NEXT I
                END IF
            NEXT COLST
        NEXT ROWST
        NEXT COLLEN
NEXT ROWLEN
```

```
'3.9
' This program determines the 5 word combination for BINGO.
DIM LETVAL(26)
DATA 9, 14, 1, 16, 20, 5, 10, 2, 21, 17, 6, 25
DATA 12, 3, 22, 18, 24, 7, 13, 26, 15, 11, 19, 4, 23, 8
FOR I = 1 TO 26: READ LETVAL(I): NEXT I
DATA BIBLE,IDYLL,NOISE,GULLY,OBESE
DATA OBESE,TITHE,INLET,IGLOO,TOWER
FOR COL = 1 TO 2
    FOR ROW = 1 TO 5
            READ HIGHWORD$ (ROW, COL): SUM = 0
            FOR I = 1 TO 5
                WORD$ = HIGHWORD$ (ROW, COL)
                    LETTER$ = MID$(WORD$, I, 1)
                    SUM = SUM + LETVAL(ASC(LETTER$) - 64)
            NEXT I
            HIGHEST(ROW, COL) = SUM
    NEXT ROW
NEXT COL
'
WHILE WORD$ <> "QUIT"
        GOSUB DisplayValues 'DisplayValues
        INPUT "Enter word:"; WORD$
        WHILE LEN(WORD$) = 5
            SUM = 0
            FOR I = 1 TO 5
                    LETTER$ = MID$(WORD$, I, 1)
                    LETTERS$ (I) = LETTER$
                    SUM = SUM + LETVAL(ASC(LETTER$) - 64)
            NEXT I
            GOSUB UseWord
            INPUT "Enter word:"; WORD$
        WEND
WEND
END
```



```
'-- Procedure UseWord
UseWord:
        FOR COL = 1 TO 2
            FOR ROW = 1 TO 5
                IF LETTERS$(COL) = MID$("BINGO", ROW, 1) THEN
                IF SUM > HIGHEST(ROW, COL) THEN
                    HIGHEST(ROW, COL) = SUM: HIGHWORD$(ROW, COL) = WORD$
                END IF
                END IF
            NEXT ROW
        NEXT COL
        RETURN
'
'-- Procedure DisplayValues
DisplayValues:
    PRINT : MAX = 0
        FOR I = 1 TO 2: MAXSUM(I) = 0: NEXT I
```

```
    ST = 1: EN = 2
    FOR ROW = 1 TO 5
        FOR COL = ST TO EN
            PRINT HIGHWORD$(ROW, COL);
            PRINT USING " ###"; HIGHEST(ROW, COL);
            PRINT SPACE$(3);
            MAXSUM(COL) = MAXSUM(COL) + HIGHEST(ROW, COL)
    NEXT COL
    PRINT
NEXT ROW
Determine maximum column and display ***
    FOR COL = ST TO EN
        PRINT SPACE$(3 + COL * 3) ; : PRINT USING "###"; MAXSUM(COL);
        IF MAXSUM(COL) > MAX THEN MAX = MAXSUM(COL) : MAXCOL = COL
NEXT COL
PRINT
IF MAXCOL = 1 THEN
    PRINT SPACE$ (6) ; "***"
ELSE
        PRINT SPACE$(18); "***"
END IF
PRINT
RETURN
```

```
'3.10
' This program displays the number of distinguishable
', permutations for a cube w/sides input as color symbols.
DIM UNIQUE$ (24, 6)
DATA TOP,FRONT,BOTTOM,BACK,RIGHT,LEFT
FOR I = 1 TO 6: READ SIDE$(I) : NEXT I
' Assign colors to original 4 cubes
FOR I = 1 TO 6
    PRINT "Enter "; SIDE$(I); " side:"; : INPUT CUBE$(I)
NEXT I
NUM = 0
' Rotate cubes and check if it is unique
FOR ROT = 0 TO 23
    GOSUB Permute
    IF ROT = 0 THEN
        VALID = -1
    ELSE
        J = 1: VALID = - 1
        WHILE (J <= NUM) AND VALID
        VALID = 0
        FOR K = 1 TO 6
            IF C$(K) <> UNIQUE$ (J, K) THEN VALID = -1
            NEXT K
            J = J + I
        WEND
    END IF
    IF VALID THEN
        NUM = NUM + 1
```

FOR I = 1 TO 6: UNIQUE\$ (NUM, I) = C\$ (I) : NEXT I END IF
NEXT ROT
PRINT "NUMBER OF DISTINGUISHABLE CUBES ="; NUM
END
'-- PROCEDURE THAT PERMUTES (SWAPS THE COLORS ON THE SQUARES)
Permute:
IF ROT MOD 4 > 0 THEN

```
        TEMP$ = C$ (2): C$(2) = C$(5): C$(5) = C$(4)
```

 C\$ (4) = C\$ (6) : C (6) = TEMP\$
 ELSE
SQUARE = INT (ROT / 4) + 1
C\$ (1) = CUBE\$ (SQUARE)
SELECT CASE SQUARE
CASE 1
FOR I = 2 TO 6: C\$(I) = CUBE\$(I): NEXT I
CASE 2
$\operatorname{C} \$(2)=\operatorname{CUBE} \$(3): \operatorname{C} \$(3)=\operatorname{CUBE} \(4)
$\operatorname{C} \$(4)=\operatorname{CUBE} \$(1): \operatorname{C}(5)=\operatorname{CUBE} \$(5): C \$(6)=\operatorname{CUBE} \(6) CASE 3

C\$ (2) = CUBE\$ (4) : C\$ (3) = CUBE\$ (1)
C\$ (4) = CUBE\$ (2) : C\$ (5) = CUBE\$ (5) : C\$ (6) = CUBE\$ (6)
CASE 4
$\operatorname{C} \$(2)=\operatorname{CUBE} \$(1): \operatorname{C} \$(3)=\operatorname{CUBE} \(2)
$\operatorname{C} \$(4)=\operatorname{CUBE} \$(3): \operatorname{C}(5)=\operatorname{CUBE} \$(5): C \$(6)=\operatorname{CUBE} \(6)
CASE 5
$\operatorname{C} \$(2)=\operatorname{CUBE} \$(2): C \$(3)=\operatorname{CUBE} \(6)
$\operatorname{C} \$(4)=\operatorname{CUBE} \$(4): \operatorname{C} \$(5)=\operatorname{CUBE} \$(3): C \$(6)=\operatorname{CUBE} \(1) CASE 6
$\operatorname{C} \$(2)=\operatorname{CUBE} \$(2): \operatorname{C} \$(3)=\operatorname{CUBE} \(5)
$\operatorname{C} \$(4)=\operatorname{CUBE} \$(4): \operatorname{C}(5)=\operatorname{CUBE} \$(1): C \$(6)=\operatorname{CUBE} \(3)
END SELECT
END IF
RETURN

FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 190 BASIC PROGRAM SOLUTIONS

11.1
' This program will display the initials of NCNB.

PRINT	"NN		N	CCCCC	NN		N	BBBB"	
PRINT	"N	N	N	C	N		N	B	B'
PRINT	"N	N	N	C	N	N	N		B"
PRINT	"N		N	C	N		N	B	B"
PRINT	"N		NN	CCCCC	N		NN		

'1.2
' This program will print the name of the SYSTEM. '
INPUT "Enter \#:"; N
PRINT "SYSTEM"; N
'1.3
' This program will display the value of programmers.

```
INPUT "Enter N: "; N
```

PRINT 66 + N; "BILLION DOLLARS"
'1.4
' This program will indicate the county for zip code.
INPUT "Enter zip code: "; N
IF $N=33701!$ OR $N=34685!$ OR $N=34646!$ THEN PRINT "PINELLAS"
ELSE
IF $N=33525!$ OR $N=34249!$ OR $N=34690!$ THEN PRINT "PASCO" ELSE PRINT "HILLSBOROUGH" END IF
END IF
'1. 5
' This program will display Hugh McColl's goals.
INPUT "Enter MMM: "; M
INPUT "Enter YYYY: "; Y
PRINT "HUGH MCCOLL WOULD LIKE NCNB TO GROW"
PRINT "TO"; M; "BILLION DOLLARS IN ASSETS BY"
PRINT "THE YEAR"; Y

```
11.6
' This program will calculate maximum number of coupons.
I
INPUT "Enter N associates: "; N
INPUT "Enter C coupons: "; C
PRINT INT(C / N + .99)
'1.7
' This program will print divisions in COBOL program.
I
INPUT "Enter division: "; D$
SELECT CASE D$
    CASE "IDENTIFICATION"
        PRINT "BEFORE = NONE"
        PRINT "AFTER = ENVIRONMENT DATA PROCEDURE"
        CASE "ENVIRONMENT"
            PRINT "BEFORE = IDENTIFICATION"
            PRINT "AFTER = DATA PROCEDURE"
    CASE "DATA"
                PRINT "BEFORE = IDENTIFICATION ENVIRONMENT"
                PRINT "AFTER = PROCEDURE"
    CASE "PROCEDURE"
                PRINT "BEFORE = IDENTIFICATION DATA PROCEDURE"
        PRINT "AFTER = NONE"
END SELECT
```

11.8
' This program will display states having holidays.
'
INPUT "Enter N: "; N
IF $\mathrm{N}<=7$ THEN PRINT "FL NC SC TX MD GA VA": END
IF $\mathrm{N}=8$ THEN PRINT "FL NC TX MD GA VA": END
IF $N=9 O R N=10$ THEN PRINT "FL TX MD GA VA": END
IF $\mathrm{N}=11$ THEN PRINT "MD"
'1. 9
' This program will correct modern dates.
1
INPUT "Enter date: "; D
INPUT "Enter A.D. or B.C.: "; A\$
IF AS = "B.C." AND D > 4 THEN PRINT D - 4; "B.C.": END
IF AS = "B.C." THEN PRINT 5-D; "A.D.": END
PRINT D + 4; "A.D"
'1.10
' This program will print a 7 letter word diamond.
1
INPUT "Enter word: "; N\$
PRINT " "; MID\$ (N\$, 4, 1)
PRINT " "; MID\$ (N\$, 3, 3)
PRINT " "; MID\$ (N\$, 2, 5)
PRINT MID\$ (N\$, 1, 7)
PRINT " "; MID\$ (N\$, 2, 5)
PRINT " "; MID\$ (N\$, 3, 3)
PRINT " "; MID\$ (N\$, 4, 1)

```
'2.1
', This program will encode a phrase.
INPUT "Enter phrase: "; A$
FOR I = 1 TO LEN(A$)
    C$ = MID$ (A$, I, 1)
    IF C$ < "A" OR C$ > "Z" THEN
            PRINT C$;
        ELSE
            IF C$ = "A" THEN
            PRINT "Z";
        ELSE
            PRINT CHR$(ASC(C$) - 1);
        END IF
    END IF
NEXT I
'2.2
' This program will determine the "type" of year.
INPUT "Enter year: "; Y
IF Y / 10 = INT(Y / 10) THEN PRINT "END OF DECADE"
IF Y / 100 = INT(Y / 100) THEN PRINT "END OF CENTURY"
IF Y / 1000 = INT(Y / 1000) THEN PRINT "END OF MILLENNIUM"
IF Y - INT(Y / 10) * 10 = 1 THEN PRINT "BEGINNING OF DECADE"
IF Y - INT(Y / 100) * 100 = 1 THEN PRINT "BEGINNING OF CENTURY"
IF Y - INT(Y / 1000) * 1000 = 1 THEN
    PRINT "BEGINNING OF MILLENNIUM"
END IF
'2. 3
' This program will print average and handicap of bowlers.
A$(1) = "BOB: ": A$(2) = "DOUG: ": A$(3) = "JACKIE:"
A$(4) = "JOSE: "
FOR I = 1 TO 4
    PRINT "Enter scores for "; A$(I); : INPUT S1, S2, S3
    AVE (I) = (S1 +S2 + S3) / 3
    IF AVE(I) > 200 THEN
        HAN (I) = 0
        ELSE
            HAN (I) = (200 - AVE (I)) * . 9
        END IF
NEXT I
FOR I = 1 TO 4
        PRINT A$(I);
        PRINT USING " AVERAGE = ###"; INT(AVE(I) + .01);
        PRINT " HANDICAP ="; INT(HAN(I) + .01)
NEXT I
```

```
'2.4
' This program will determine # of days to add to date.
I
INPUT "Enter date: "; D$
MM = VAL (LEFT$ (D$, 2))
DD = VAL (MID$ (D$, 4, 2))
YY = VAL (RIGHT$ (D$, 4))
PRINT "ADD ";
IF YY < 1700 OR (YY = 1700 AND MM < 3) THEN PRINT "10 DAYS": END
IF YY < 1800 OR (YY = 1800 AND MM < 3) THEN PRINT "11 DAYS": END
IF YY < 1900 OR (YY = 1900 AND MM < 3) THEN PRINT "12 DAYS": END
IF YY < 2100 OR (YY = 2100 AND MM < 3) THEN PRINT "13 DAYS": END
'2.5
', This program will sort efficiencies of sorting algorithms.
N$ (1) = "BUBBLE SORT": N$(2) = "SHELL SORT": N$ (3) = "QUICK SORT"
INPUT "Enter N: "; N
A(1) = N * (N - 1) / 2
A(2) = N * (LOG(N) / LOG(2)) * (LOG(N) / LOG(2))
A(3) = N * (LOG(N) / LOG(2))
FOR I = 1 TO 2
    FOR J = I + 1 TO 3
        IF A(I) > A(J) THEN
        SWAP A(I), A(J): SWAP N$(I), N$(J)
            END IF
        NEXT J
NEXT I
FOR I = 1 TO 3: PRINT N$ (I): NEXT I
```

```
'2.6
' This program will determine status for each hole of golf.
DATA 4, 3, 4, 5, 4, 3, 5, 4, 4
FOR I = 1 TO 9: READ P(I): PAR = PAR + P(I): NEXT I
FOR I = 1 TO 9
    PRINT "Enter score for hole"; I; : INPUT S(I)
    SUM = SUM + S(I)
NEXT I
PRINT "HOLE PAR SCORE STATUS"
PRINT "---- --- -----------"
FOR I = 1 TO 9
    PRINT I; " "; P(I); " "; S(I); " ";
    D = S(I) - P(I)
    SELECT CASE D
        CASE - 3: PRINT "DOUBLE EAGLE"
        CASE -2: PRINT "EAGLE"
        CASE -1: PRINT "BIRDIE"
        CASE 0: PRINT "PAR"
        CASE 1: PRINT "BOGEY"
        CASE 2: PRINT "DOUBLE BOGEY"
    END SELECT
NEXT I
PRINT " --- -----"
PRINT " "; PAR; " "; SUM
'2.7
' This program will determine time calendar is ahead/behind.
INPUT "Enter N: "; N
' Sum 5 hours 48 min 47.8 sec for every year
H}=5*N:M=48*N:S=47.8*
    Convert to standard form
SN = INT(S / 60):S = S - SN * 60: M = M + SN
MN = INT(M / 60): M = M - MN * 60: H = H + MN
HN = INT(H / 24): H = H - HN * 24: D = HN
' Subtract 1 for every leap year counted
LY = INT (N / 4)
IF LY <= D THEN
    PRINT D - LY; "DAYS "; H; "HOURS "; M; "MIN ";
    PRINT USING "##.# SEC AHEAD"; S
ELSE
    PRINT (LY - D - 1); "DAYS ";
    PRINT 23 - H; "HOURS "; 59 - M; "MIN ";
    PRINT USING "##.# SEC BEHIND"; 60 - S
END IF
```

```
'2.8
' This program will display members on a committee.
DATA JACKIE,TOM, LOVETTA, GREG,TONY, AL, KAREN
DATA JAN,NORM, TRUDY, THERESA, ALICE,DAVE, JIM, STEVE
DIM A$ (20)
FOR I = 1 TO 15: READ A$(I): NEXT I
N$(1) = "BARB": NM(1) = 6:N$(2) = "JOE": NM(2) = 8
N$(3) = "DOUG": NM(3) = 9: Y = 1989: M = 9
INPUT "Enter month, year: "; MONTH, YEAR
PRINT USING "##/"; M; : PRINT USING "#### - "; Y;
PRINT N$(1); " "; N$(2) ; " "; N$(3)
I = 1
WHILE (M <> MONTH) OR (Y <> YEAR)
    M = M + 1: IF M = 13 THEN M = 1: Y = Y + 1
    FOR J = 1 TO 3
        IF ABS(M - NM(J)) = 6 THEN
                N$(J) = A$(I): I = I + I: NM(J) = M
                PRINT USING "##/"; M; : PRINT USING "#### - "; Y;
                PRINT N$(1); " "; N$(2); " "; N$(3)
        END IF
    NEXT J
WEND
'2.9
' This program will graph the sine and cosine functions.
FOR F = 1 TO 2
    CLS
    FOR I = 1 TO 24: LOCATE I, 40: PRINT "!"; : NEXT I
    LOCATE 12, 1
    FOR I = 1 TO 79: PRINT "-"; : NEXT I
    LOCATE 12, 40: PRINT "+";
    CINC = 39 / 3.14: RINC = 11
    FOR X = -3.14 TO 3.14 STEP . 05
            C = 40 + CINC * X
            IF F = 1 THEN R = 12 - SIN(X) * RINC
            IF F = 2 THEN R = 12 - COS (X) * RINC
            LOCATE R, C: PRINT "*";
        NEXT X
        A$ = "": WHILE A$ = "": A$ = INKEY$: WEND
    NEXT F
CLS
```

```
'2.10
' This program will estimate hours of training given choices.
I
CLS
PRINT " NCNB IN-HOUSE TRAINING LIST"
PRINT
PRINT "COURSE # COURSE NAME EST. HOURS"
PRINT "-------------------------------
A$(1) = "187-11X": B$(1) = "ISPF/PDS FUNDAMENTALS 6.5 - 8"
A$(2) = "187-15X": B$(2) = "ISPF/PDS FOR PROGRAMMERS 4.5 - 6"
A$(3) = "220-AXX": B$(3) = "JCL FUNDAMENTALS 15 - 20"
A$(4) = "200-AXX": B$(4) = "VSAM CONCEPTS 4 - 7"
A$(5) = "123-2XX": B$(5) = "MVS/SP/XA VSAM 7 - 11"
A$(6) = "130-11X": B$(6) = "CICS/VS SKILLS I 6 - 8"
A$(7) = "130-15X": B$(7) = "CICS/VS SKILLS II 4 - 6"
DATA 6.5,8, 4.5,6, 15,20, 4,7, 7,11, 6,8, 4,6
FOR I = 1 TO 7: READ LOW(I), HIGH(I): NEXT I
FOR I = 1 TO 7
    PRINT A$(I) ; " "; B$(I)
NEXT I
PRINT : NUM = 0
INPUT "Enter course # (or 000-000 to end): "; C$
WHILE C$ <> "000-000"
    I = 1: WHILE C$ <> A$(I): I = I + 1: WEND
    NUM = NUM + 1: C(NUM) = I
    LSUM = LSUM + LOW(I): HSUM = HSUM + HIGH(I)
    INPUT "Enter course # (or 000-000 to end): "; C$
WEND
' Display options selected and TOTAL estimated hours
CLS
PRINT "COURSE NAME EST. HOURS"
PRINT "-----------------------
FOR I = 1 TO NUM: PRINT B$(C(I)) : NEXT I
PRINT " ----------"
PRINT USING " TOTAL = ##.#"; LSUM;
PRINT " -"; HSUM; "HOURS"
```

```
'3.1
',This program will produce acronyms for phone numbers.
'
DIM A$ (18)
DATA AGENT, SOAP, MONEY, JEWEL, BALL, LOANS, CARE, SAVE, CALL
DATA PAVE, KEEP, KINGS, KNIFE, KNOCK, JOINT, JUICE, LOBBY, RATE
FOR I = 1 TO 18: READ A$(I): NEXT I
DATA A,B,C, D, E,F, G,H,I, J,K,L, M,N,O, P,R,S, T,U,V, W,X,Y
FOR I = 2 TO 9: READ L1$(I), L2$(I), L3$(I): NEXT I
INPUT "Enter phone #: "; PH$
P4$ = RIGHT$(PH$, 4): P5$ = MID$(PH$, 3, 1) + P4$
' Convert words to number strings
FOR I = 1 TO 18
    L = LEN(A$(I)): NUM$ = ""
    FOR J = 1 TO L
            K = 2: C$ = MID$(A$(I), J, 1)
            WHILE (L1$(K) <> C$) AND (L2$(K) <> C$) AND (L3$(K) <> C$)
                    K=K + I
            WEND
            NUM$ = NUM$ + LTRIM$ (STR$ (K))
        NEXT J
        IF L = 4 AND NUM$ = P4$ THEN
            PRINT LEFT$(PH$, 4) ; A$(I)
        ELSE
            IF L = 5 AND NUM$ = P5$ THEN
                    PRINT LEFT$(PH$, 2); LEFT$(A$(I), 1); " - ";
                    PRINT RIGHT$(A$(I), 4)
        END IF
    END IF
NEXT I
```

```
13.2
' This program will select words given a string w/ wildcard.
'
DATA COMPUTE, COMPUTER, COMPUTERS, COMPORT, COMPUTES
DATA COMPUTED, ATTRACTIVE, ABRASIVE, ADAPTIVE, ACCEPTIVE
DATA AERATING, CONTESTED, CONTESTER, CORONETS, CONTESTS
DATA CONTESTERS, COUNTESS, CREATIVE, CREATE, CREATURE
DATA CREATION, EVERYBODY, EVERYONE, EMPTY, ELECTION
DIM A$ (25)
N = 25: FOR I = 1 TO N: READ A$(I): NEXT I: I = 0
DO UNTIL I > L
    INPUT "Enter string: "; A$: L = LEN(A$): W = 0: I = 0: X$ = ""
    WHILE (I <= L) AND (X$ <> "*")
        I = I + I: X$ = MID$(A$, I, 1)
    WEND
    IF I > L THEN END
' Asterisk is position I
    L$ = LEFT$(A$, I - I): R$ = RIGHT$ (A$, L - I)
    FOR J = 1 TO N
        IF LEFT$ (A$ (J), I - I) = L$ AND RIGHT$ (A$ (J), L - I) = R$ THEN
            PRINT A$ (J); " "; : W = 1
        END IF
    NEXT J
    IF W = O THEN PRINT "NO WORDS FOUND"
    PRINT
LOOP
```

```
'3.3
' This program will keep score for a double dual race.
'
CLS : DIM IN$ (21)
FOR I = 1 TO 21
    PRINT "Place "; I; ":"; : INPUT IN$(I)
    IF I > 1 THEN
            J = 1
            WHILE J <= TN AND INIT$(J) <> IN$(I): J = J + 1: WEND
        END IF
        IF (INIT$(J) <> IN$ (I)) OR (I = I) THEN
            TN = TN + 1: INIT$(TN) = IN$(I)
        END IF
NEXT I
            Assert TEAM$(1, 2, 3) = 3 unique team INITIALS
FOR I = 1 TO 2
    FOR J = I + 1 TO 3
        PL = 0: T1 = 0: T2 = 0: T1PL = 0: T2PL = 0
        FOR K = 1 TO 21
            IF IN$(K) = INIT$(I) THEN
            PL = PL + 1: T1 = T1 + PL: T1PL = T1PL + 1
            TEAM1(T1PL) = PL
                END IF
                IF IN$ (K) = INIT$(J) THEN
            PL = PL + 1: T2 = T2 + PL: T2PL = T2PL + 1
            TEAM2 (T2PL) = PL
                END IF
            NEXT K
            T1 = T1 - TEAM1 (6) - TEAM1 (7)
            T2 = T2 - TEAM2 (6) - TEAM2 (7)
            PRINT "TEAM "; INIT$(I); ":"; TI; " POINTS"
            PRINT "TEAM "; INIT$(J); ":"; T2; " POINTS"
            IF (T1 < T2) OR (T1 = T2 AND TEAM1 (6) < TEAM2 (6)) THEN
            PRINT "TEAM "; INIT$(I);
        ELSE
            PRINT "TEAM "; INIT$(J) ;
        END IF
        PRINT " WINS!": PRINT
    NEXT J
NEXT I
```

```
13.4
' This program will determine who gets which program #s.
'
DEFINT A-Z
INPUT "Enter X, Y, Z: "; X, Y, Z
A$(1) = "AL, DOUG, AND JAN = "
A$(2) = "AL AND DOUG = "
A$ (3) = "AL AND JAN = "
A$(4) = "DOUG AND JAN = "
A$(5) = "AL = "
A$(6) = "DOUG = "
A$(7) = "JAN = "
A$(8) = "NORM = "
FOR K = 1 TO 8
    PRINT A$ (K) ; : ONE = 0
    FOR I = 1 TO 30
        XD = (I / X = INT (I / X)) : YD = (I / Y = INT (I / Y))
        ZD = (I / Z = INT(I / Z))
        I$ = LTRIM$(STR$(I)) + " "
        IF K = 1 AND XD AND YD AND ZD THEN PRINT I$; : ONE = 1
        IF K = 2 AND XD AND YD AND NOT ZD THEN PRINT I$; : ONE = 1
        IF K = 3 AND XD AND NOT YD AND ZD THEN PRINT I$; : ONE = 1
        IF K = 4 AND NOT XD AND YD AND ZD THEN PRINT I$; : ONE = 1
        IF K = 5 AND XD AND NOT YD AND NOT ZD THEN PRINT I$; : ONE = 1
        IF K = 6 AND NOT XD AND YD AND NOT ZD THEN PRINT I$; : ONE = 1
        IF K = 7 AND NOT XD AND NOT YD AND ZD THEN PRINT I$; : ONE = 1
        IF K = 8 AND NOT XD AND NOT YD AND NOT ZD THEN
            PRINT I$; : ONE = 1
        END IF
    NEXT I
    IF ONE = 0 THEN PRINT "NONE" ELSE PRINT
NEXT K
```

```
'3.5
' This program will display numbers 1-8 and a blank in a
' 3 x 3 array. When a digit is pressed, it moves into the
' blank (if possible).
'
RANDOMIZE TIMER
' Assign numbers in array sequentially then scramble them
FOR I = 1 TO 3
    FOR J = 1 TO 3
            A(I, J) = (I - 1) * 3 + J - I
    NEXT J
NEXT I
FOR I = 1 TO 3
    FOR J = 1 TO 3
            R1 = INT(RND (3) * 3) + 1: R2 = INT(RND (3) * 3) + 1
            X = A(I, J):A(I, J) = A(R1, R2):A(R1, R2) = X
        NEXT J
NEXT I
'
WHILE (DIG <> 9)
' Display Array
    CLS
    FOR I = 1 TO 3
        FOR J = 1 TO 3
            IF A(I, J) > 0 THEN PRINT A(I, J); " ";
                IF A(I, J) = 0 THEN PRINT " "; : BX = I: BY = J
            NEXT J: PRINT
        NEXT I
' Accept valid digit or 9 (to end)
    VALID = 0
    WHILE (VALID = 0) AND (DIG <> 9)
        A$ = "": WHILE A$ = "": A$ = INKEY$: WEND
        DIG = VAL(A$)
        FOR I = 1 TO 3
            FOR J = 1 TO 3
            IF DIG = A(I, J) THEN IX = I: IY = J
                NEXT J
            NEXT I
            IF ABS (BX - IX) + ABS (BY - IY) = 1 THEN VALID = -1
        WEND
'
    IF VALID THEN
            Move digit into blank space
        X = A(IX, IY): A(IX, IY) = A (BX, BY):A AX, BY) = X
        END IF
WEND
```

```
13.6
' This program will simulate the moves of a chess game.
A$(8) = "BR1 BK1 BB1 BQ BK BB2 BK2 BR2 ! 8"
A$(7) = "BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8 ! 7"
A$ (6) = " ! 6"
A$(5) = " ! 5"
A$ (4) = " ! 4"
A$(3) = " ! 3"
A$(2) = "WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 ! 2"
A$(1) = "WR1 WK1 WB1 WQ WK WB2 WK2 WR2 ! 1"
A$(9) = "-----------------------------------------
A$(10) = " A B C D E E F G H"
CLS : L = LEN(A$ (1))
FOR I = 8 TO 1 STEP -1: PRINT A$(I): NEXT I
PRINT A$ (9): PRINT A$ (10)
WKR = 1: WKC = 5: BKR = 8: BKC = 5 'Location of 2 kings
WHILE (R2 <> WKR OR C2 <> WKC) AND (R2 <> BKR OR C2 <> BKC)
    LOCATE 12, 1: PRINT SPACE$(30): LOCATE 12, 1
    IF MOV = O THEN INPUT "Enter white move: "; M$
    IF MOV = I THEN INPUT "Enter black move: "; M$
' Convert moves to coordinates
    C1 = ASC(LEFT$ (M$, 1)) - 64: RI = VAL (MID$ (M$, 2, 1))
    C2 = ASC(MID$ (M$, 4, 1)) - 64: R2 = VAL (RIGHT$ (M$, 1))
' Move piece from 1 string to another and redisplay
    PIEC$ = MID$(A$(R1), (C1 - 1) * 4 + 1, 4)
    L$ = LEFT$ (A$ (R2), (C2 - 1) * 4)
    R$ = RIGHT$(A$(R2), L - C2 * 4)
    A$ (R2) = L$ + PIEC$ + R$
    LOCATE 9 - R2, 1: PRINT A$ (R2)
' Remove piece from string by placing spaces and redisplay
    L$ = LEFT$ (A$ (R1), (C1 - 1) * 4)
    R$ = RIGHT$(A$ (RI), L - C1 * 4)
    A$ (R1) = L$ + " " + R$
    LOCATE 9 - R1, 1: PRINT A$ (R1)
' If a king moved, store new location
    IF R1 = WKR AND C1 = WKC THEN WKR = R2: WKC = C2: R2 = 0: C2 = 0
    IF R1 = BKR AND C1 = BKC THEN BKR = R2: BKC = C2: R2 = 0: C2 = 0
    IF MOV = 0 THEN MOV = 1 ELSE MOV = 0
WEND
LOCATE 12, 1: PRINT "CHECK MATE, ";
IF R2 = WKR AND C2 = WKC THEN PRINT "BLACK WON ": END
PRINT "WHITE WON
```

```
'3.7
' This program will print date of Easter and Lent in a year.
DATA 4,14, 4,3, 3,23, 4,11, 3,31, 4,18, 4,8, 3,28, 4,16, 4,5
DATA 3,25, 4,13, 4,2, 3,22, 4,10, 3,30, 4,17, 4,7, 3,27
DIM M(18), D(18)
FOR I = 0 TO 18: READ M(I), D(I): NEXT I
MD(1) = 31: MD(2) = 28: MD(3) = 31
MO$(2) = "FEBRUARY": MO$(3) = "MARCH": MO$(4) = "APRIL"
INPUT "Enter year: "; Y
KE = Y - INT(Y / 19) * 19
' Calculate # of days between 1,1,1970 and date
DAYS = (Y - 1970) * 365 + INT((Y - 1968) / 4)
FOR I = 1 TO M(KE) - 1: DAYS = DAYS + MD(I): NEXT I
DAYS = DAYS + D(KE)
X = DAYS - INT(DAYS / 7) * 7
' if X = 0-Wed, 1-Thu, 2-Fri, 3-Sat, 4-Sun, 5-Mon, 6-Tue
IF X = O OR X = 1 OR X = 2 OR X = 3 THEN EDAY = D(KE) + (4 - X)
IF X = 4 OR X = 5 OR X = 6 THEN EDAY = D(KE) + (11 - X)
EMON = M(KE)
IF M(KE) = 3 AND EDAY > MD(3) THEN
    EDAY = EDAY - MD(3): EMON = EMON + 1
END IF
PRINT "EASTER IS ON "; MO$(EMON); EDAY
' Compute date of Lent
LMON = EMON - 1: LDAY = MD(LMON) + EDAY - 46
IF LDAY < 1 THEN LMON = LMON - 1: LDAY = LDAY + MD(LMON)
IF LMON = 2 AND Y / 4 = INT(Y / 4) THEN LDAY = LDAY + 1
PRINT "LENT IS ON "; MO$(LMON); LDAY
```

```
'3.8
' This program will keep score for a bowler.
DIM A(10, 3): WIDTH 40: CLS
FOR I = 1 TO 10: PRINT "Enter frame"; I; : INPUT A$(I): NEXT I
PRINT
PRINT "-1- -2- -3- -4- -5- -6- -7- -8- -9- -10-";
PRINT "---!----!---!---!---!---!---!----!--------!";
FOR I = 1 TO 10
    PRINT SPACE$(3 - LEN(A$(I))) ; A$(I) ; "!";
NEXT I
' Assign values to A FRames according to X, /, or pins
FOR FR = 1 TO 10
    L = LEN (A$ (FR))
    FOR J = 1 TO L
        MD$ = MID$(A$ (FR), J, 1)
        IF MD$ = "X" THEN
            A(FR, J) = 10: LOOK(FR) = 2
        ELSE
            IF MD$ = "/" THEN
                A(FR, J) = 10-A(FR, J - 1): LOOK(FR) = 1
            ELSE
                A(FR, J) = VAL (MD$)
                END IF
        END IF
    NEXT J
NEXT FR
' Determine FRame values with LOOK ahead
'
FOR FR = 1 TO 10
    SUM(FR) = SUM(FR - 1) + A(FR, 1) + A(FR, 2)
    IF LOOK(FR) > O THEN
        IF LOOK(FR) <= 1 THEN
            *** A spare / needs 1 more value added ***
            IF FR = 10 THEN
                SUM(FR) = SUM(FR) + A(FR, 3)
                    ELSE
                        SUM(FR)=SUM(FR) + A(FR + 1, 1)
            END IF
        ELSE
            *** A strike X needs 2 more values added
        IF FR = 10 THEN
            SUM(FR) = SUM(FR) + A(FR, 3)
        ELSE
            SUM(FR) = SUM(FR) + A(FR + 1, 1) + A(FR + 1, 2)
            IF FR <> 9 THEN
                IF A(FR + 1, 1) = 10 THEN
                    SUM(FR) = SUM (FR) + A(FR + 2, 1)
                END IF
            END IF
        END IF
    END IF
```

```
    END IF
    | *** Print FRame's value ***
    SUM$ = MID$(STR$ (SUM (FR)), 2)
    PRINT SUM$; SPACE$(3 - LEN(SUM$)); "!";
NEXT FR
PRINT STRING$(40, "-")
'3.9
' This program will solve an N x N system of equations.
INPUT "Enter N: "; N
FOR ROW = 1 TO N
    PRINT "Enter coefficients for row"; ROW
    FOR COL = 1 TO N
        PRINT "CO"; COL; ": "; : INPUT C(ROW, COL)
    NEXT COL
    INPUT "Enter constant: "; C(ROW, N + 1)
NEXT ROW
' Make main diagonals all ls with Os to the left
FOR ROW = 1 TO N
    DEN = C(ROW, ROW)
    FOR COL = ROW TO N + 1
            C(ROW, COL) = C(ROW, COL) / DEN
    NEXT COL
    FOR R = ROW + I TO N
        X = C(R, ROW)
        FOR COL = ROW TO N + I
            C(R,COL) = C(R,COL) - X * C(ROW, COL)
        NEXT COL
    NEXT R
NEXT ROW
' Make Os on the right of 1s on main diagonal, not const
FOR ROW = N TO 1 STEP -1
    FOR R = ROW - 1 TO 1 STEP -1
        X = C(R, ROW)
        FOR COL = ROW TO N + 1
            C(R,COL) = C(R,COL) - X * C(ROW, COL)
        NEXT COL
    NEXT R
NEXT ROW
' Display solution
PRINT "("; LTRIM$(STR$(INT(C(1, N + 1) + .1)));
FOR ROW = 2 TO N: PRINT ", ";
    PRINT LTRIM$(STR$(INT(C(ROW, N + 1) + . I)));
NEXT ROW
PRINT ")"
```

```
'3.10
' This program will solve crytorithms with two 2-letter addends
' and a 3-letter sum, using only the letters A, B, C, D, and E.
'
DEFINT A-Z
INPUT "Enter first addend: "; S1$
INPUT "Enter second addend: "; S2$
INPUT "Enter sum: "; S3$
L$ = S1$ + S2$ + S3$
' Store in FL() the index of the first occurence
FOR I = 1 TO 7
    CH$ = MID$(L$, I, 1)
    J = 1: WHILE MID$ (L$, J, 1) <> CH$: J = J + 1: WEND
    FL(I) = J
        IF J = I THEN NL = NL + 1: UL (NL) = I 'A new letter
NEXT I
FOR N1 = 10 TO 98 'N1 must be 2 digits, >9
    FOR N2 = 100 - N1 TO 98 'N2 must be 2 digits, >9
        SUM = N1 + N2 'Sum must be 3 digits >99
        N1$ = LTRIM$ (STR$ (N1))
        N2$ = LTRIM$ (STR$ (N2))
        SUM$ = LTRIM$ (STR$ (SUM))
        NS$ = N1$ + N2$ + SUM$
        I = 1: SOL = 1
            Check if similar letters correspond to similar #s
        WHILE (I <= 7) AND (SOL = 1)
            CH$ = MID$ (NS$, I, 1)
            IF CH$ <> MID$(NS$, FL(I), 1) THEN SOL = 0
            I = I + I
        WEND
            Check if unique letters correspond to unique digits
        FOR I = 1 TO NL - 1
            FOR J = I + 1 TO NL
                C1$ = MID$(NS$, UL(I), 1)
                C2$ = MID$(NS$, UL (J), 1)
                IF C1$ = C2$ THEN SOL = 0
                NEXT J
        NEXT I
                    Display Solution
        IF SOL > 0 THEN
            FOR I = 1 TO NL
                PRINT MID$(L$, UL(I), 1); " = "; MID$(NS$, UL(I), 1)
                NEXT I
                PRINT : TOT = TOT + 1: END ' Only one needed
        END IF
    NEXT N2
NEXT N1
IF TOT = O THEN PRINT "NO SOLUTION POSSIBLE"
```


FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '91 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program will display a phrase as a rectangle.
A$ = "COMPUTER CONTEST 1991"
CLS
PRINT A$: L = LEN(A$)
FOR I = 2 TO L - 1
        LOCATE I, 1: PRINT MID$ (A$, I, 1)
        LOCATE I, L: PRINT MID$(A$, L - I + 1, 1)
NEXT I
FOR I = L TO 1 STEP -1
    PRINT MID$(A$, I, 1);
NEXT I
'1.2
' This program will display 2 random #s and their sum.
```



```
RANDOMIZE TIMER
X = INT(RND (3) * 19) - 9
Y = INT(RND(3) * 19) - 9
PRINT X; " + "; Y; " = "; X + Y
'1.3
' This program prints the total point score for a team.
'
INPUT "Enter team name: "; N$
INPUT "Enter # of 1 point programs: "; P1
INPUT "Enter # of 2 point programs: "; P2
INPUT "Enter # of 3 point programs: "; P3
TOT = P1 + P2 * 2 + P3 * 3
PRINT N$; " SCORED"; TOT; "POINTS"
'1.4
', This program displays a spreadsheet.
CLS
PRINT " A B C D E F G H I J K L M N O P Q R S T"
FOR I = 1 TO 20: PRINT USING "##"; I: NEXT I
```

```
'1.5
```

'1.5
' This program determines the number of teams competing.
' This program determines the number of teams competing.
INPUT "Enter number of students: "; X
INPUT "Enter number of students: "; X
PRINT X / 4; "TEAMS"

```
PRINT X / 4; "TEAMS"
```

11.6
' This program displays a word twice intersecting at a letter. 1
INPUT "Enter word: "; A\$
INPUT "Enter letter: "; L\$
$\mathrm{X}=\operatorname{INSTR}(\mathrm{A} \$, \mathrm{~L} \$)$
CLS : LOCATE X, 1: PRINT A\$
FOR I = 1 TO LEN(A\$)
LOCATE I, X: PRINT MID\$ (A\$, I, 1)
NEXT I
'1.7
' This program displays fields from an account key.
INPUT "Enter account key: "; A\$
PRINT "ORGANIZATION "; MID\$(A\$, 1, 3)
PRINT "BRANCH "; MID\$ (A\$, 4, 3)
PRINT "DEALER "; MID\$ (A\$, 7, 4)
PRINT "CLASS "; MID\$(A\$, 11, 3)
PRINT "UNIT "; MID\$ (A\$, 14, 6)
'1.8
' This program displays the \# of job steps in JCL.
INPUT "Enter line: "; L\$
WHILE L\$ <> "//"
IF L\$ = "EXEC" THEN ST = ST + 1
INPUT "Enter line: "; L\$
WEND
PRINT ST; "JOB STEPS"
'1.9
' This program will replace MAN with PERSON.

```
INPUT "Enter sentence: "; S$
```

FOR I = 1 TO LEN(S\$)
M\$ = MID\$ (S\$, I, 3)
IF M\$ = "MAN" THEN
PRINT "PERSON"; : I = I + 2
ELSE
IF M\$ = "MEN" THEN
PRINT "PERSONS"; : I = I + 2
ELSE
PRINT MID\$ (S\$, I, 1);
END IF
END IF
NEXT I

```
'1.10
' This program determines the winner of two computer teams.
'
INPUT "Enter team name: "; N1$
INPUT "Enter points, time, penalties: "; P1, T1, PEN1
I
INPUT "Enter team name: "; N2$
INPUT "Enter points, time, penalties: "; P2, T2, PEN2
I
IF P1 > P2 THEN W$ = N1$ ELSE IF P2 > P1 THEN W$ = N2$
H1 = INT(T1 / 100): M1 = T1 - H1 * 100
H2 = INT(T2 / 100): M2 = T2 - H2 * 100
TI1 = H1 * 60 + M1 + PEN1 * 5
TI2 = H2 * 60 + M2 + PEN2 * 5
IF P1 = P2 THEN IF TI1 < TI2 THEN W$ = N1$ ELSE W$ = N2$
PRINT W$; " WINS"
```

```
'2.1
' This program displays a pyramid of consecutive numbers.
'
INPUT "Enter N: "; N
S = 1
WHILE S < N
    I = I + I
    PRINT SPACE$(20 - I * 2);
    FOR J = 1 TO I
                PRINT MID$(STR$(100 + S), 3, 2); " ";
                S = S + 1
    NEXT J
    PRINT
WEND
'2.2
' This program will line up numbers with decimal points.
'
FOR I = 1 TO 5
    INPUT "Enter #: "; A$(I)
NEXT I
FOR I = 1 TO 5
    X = INSTR(A$(I), ".")
    PRINT SPACE$ (6 - X); A$ (I)
    SUM# = SUM# + VAL(A$(I))
NEXT I
PRINT " ---------"
TOT$ = STR$(SUM# + .00001) 'Round off machine error
X = INSTR(TOT$, ".")
PRINT SPACE$ (6 - X) ; MID$(TOT$, 1, X + 4) 'Round off error
```

```
'2. 3
, This program will convert BASIC to COBOL.
INPUT "Enter statement: "; S$
FOR I = 1 TO LEN(S$)
    M$ = MID$(S$, I, 1): N$ = MID$(S$, I + 1, 1)
    MN$ = MID$(S$, I, 2)
    IF M$ = "=" OR M$ = ">" OR M$ = "<" THEN
        IF N$ = "=" OR N$ = ">" OR N$ = "<" THEN
            IF MN$ = "<=" OR MN$ = "=<" THEN PRINT "IS NOT GREATER
THAN";
            IF MN$ = ">=" OR MN$ = "=>" THEN PRINT "IS NOT LESS THAN";
                IF MN$ = "<>" OR MN$ = "><" THEN PRINT "IS NOT EQUAL TO";
                I = I + I
            ELSE
                IF M$ = ">" THEN PRINT "IS GREATER THAN";
                IF M$ = "<" THEN PRINT "IS LESS THAN";
                IF M$ = "=" THEN PRINT "IS EQUAL TO";
            END IF
        ELSE
            PRINT M$;
        END IF
NEXT I
'2.4
' This program ranks teams in a league.
'
INPUT "Enter N: "; N
FOR I = 1 TO N
    INPUT "Enter team: "; N$(I)
    INPUT "Enter wins, losses: "; W(I), L(I)
NEXT I
FOR I = 1 TO N - 1
    FOR J = I + 1 TO N
        IF W(I) <= W(J) OR (W(I) = W(J) AND N$(I) > N$(J)) THEN
            SWAP W(I), W(J): SWAP L(I), L(J): SWAP N$(I), N$ (J)
        END IF
        NEXT J
NEXT I
    ' Display teams in order
FOR I = 1 TO N
    IF W(I) = W(I - I) THEN PRINT R; ELSE PRINT : PRINT I; : R = I
    PRINT N$(I) ; SPACE$(13 - LEN(N$(I))) ; W(I) ; ","; L(I)
NEXT I
```

```
'2. 5
' This program will guess a secret number within 7 tries.
INC = 64: GUESS = 64
WHILE A$ <> "R"
    G=G + 1
    PRINT USING "GUESS #"; G;
    PRINT ":"; GUESS
    INPUT "Enter H, L, or R: "; A$
    INC = INC / 2
    IF A$ = "L" THEN GUESS = GUESS - INC
    IF A$ = "H" THEN GUESS = GUESS + INC
WEND
'2.6
' This program prints text in pyramid form.
INPUT "Enter text: "; A$: L = LEN(A$)
I = 1
WHILE I <= L
    MD$ = MID$(A$, I, I)
    IF MD$ <> " " THEN
        L$ = L$ + MD$
    ELSE
        IF LEN (L$) < PL + 2 THEN
                L$ = L$ + MD$
        ELSE
            PL = LEN(L$)
            PRINT SPACE$(20 - INT(PL / 2)); L$: L$ = ""
        END IF
    END IF
    I = I + I
WEND
PRINT SPACE$ (20 - INT (LEN (L$) / 2)); L$
'2.7
' This program displays a rectangle of asterisks.
'
INPUT "Enter length, width: "; L, W
CLS
COL = INT((80 - L) / 2): ROW = INT ((24 - W) / 2)
LOCATE ROW, COL
FOR I = 1 TO L: PRINT "*"; : NEXT I
FOR I = 1 TO W - 2
    LOCATE ROW + I, COL: PRINT "*"
    LOCATE ROW + I, COL + L - 1: PRINT "*"
NEXT I
LOCATE ROW + W - 1, COL
FOR I = 1 TO L: PRINT "*"; : NEXT I
```

```
'2.8
' This program displays a bar graph for lengths.
I
DIM A(12)
INPUT "Enter title: "; T$
FOR I = 0 TO 11
    PRINT "Enter # for"; 1980 + I; ":";
    INPUT A(I): IF A(I) > MAX THEN MAX = A(I)
NEXT I
INC = MAX / 20
CLS : PRINT SPACE$(3); T$; SPACE$(3);
PRINT USING "ASTERISK = ####.##"; INC
FOR I = 20 TO 1 STEP -1: PRINT USING "##"; I: NEXT I
FOR I = 1 TO 12 * 3 + 2: PRINT "-"; : NEXT I
PRINT : PRINT " ";
FOR I = 0 TO 11: PRINT USING "###"; 80 + I; : NEXT I
FOR I = 0 TO 11
    FOR J = 1 TO INT(A(I) / INC)
        LOCATE 22 - J, I * 3 + 4: PRINT " *"
    NEXT J
NEXT I
LOCATE 23, 1
```

```
'2.9
' This program displays a store maintenance list.
INPUT "Enter # of entries in yesterday's file: "; F1
FOR I = 1 TO F1
    INPUT "Enter ID: "; ID1$(I)
    INPUT "Enter item: "; ITEM1$(I)
NEXT I
INPUT "Enter # of entries in today's file: "; F2
FOR I = 1 TO F2
    INPUT "Enter ID: "; ID2$(I)
    INPUT "Enter item: "; ITEM2$(I)
NEXT I
PRINT : PRINT "ADDED"
FOR I = 1 TO F2
    J = 1
    WHILE J < F1 AND ID2$(I) <> ID1$(J): J = J + 1: WEND
    IF ID2$(I) <> ID1$(J) THEN
        AN = AN + 1: PRINT ID2$(I); " "; ITEM2$(I)
    END IF
NEXT I
PRINT : PRINT "CHANGED"
FOR I = 1 TO F1
    J = 1
    WHILE J < F2 AND (ID1$(I) <> ID2$(J) OR ITEM1$(I) = ITEM2$(J))
        J=J + I
    WEND
    IF ID1$(I) = ID2$(J) AND ITEM1$(I) <> ITEM2$ (J) THEN
        CN = CN + 1: PRINT ID1$(I); " "; ITEM1$(I); " "; ITEM2$(J)
    END IF
NEXT I
PRINT : PRINT "DELETED"
FOR I = 1 TO F1
    J = 1
    WHILE J < F2 AND ID1$(I) <> ID2$(J): J = J + 1: WEND
    IF ID1$(I) <> ID2$(J) THEN
        DN = DN + 1: PRINT ID1$(I); " "; ITEM1$(I)
    END IF
NEXT I
PRINT
PRINT "TOTAL ADDED ="; AN
PRINT "TOTAL CHANGED ="; CN
PRINT "TOTAL DELETED ="; DN
```

```
'2.10
' This program displays the contents of contest diskettes.
I
INPUT "Enter year: "; Y$: YY$ = RIGHT$(Y$, 2) : Y = VAL(YY$)
DATA PRB, JDG, PG1, PG2, BAS, PAS
FOR I = 1 TO 6: READ Z$(I) : NEXT I
XXX$(1) = "ONE": XXX$(2) = "TWO": XXX$(3) = "THR"
FOR I = 1 TO 4
    FOR J = 1 TO 3
            PRINT "FHS"; YY$; "-"; MID$(STR$(J), 2); "."; Z$(I)
    NEXT J
NEXT I
TOT = 12
FOR I = 5 TO 6
    FOR J = 1 TO 3
        P = 10
        IF Y = 80 AND J = 3 THEN P = 12
        IF Y = 81 THEN P = 5
        IF Y = 82 AND J = 2 THEN P = 12
        IF Y = 82 AND J = 3 THEN P = 8
        FOR K = 1 TO P
            PRINT XXX$ (J) ; MID$(STR$ (K), 2) ; "T"; YY$; "."; Z$(I)
            TOT = TOT + 1
            IF TOT = 20 THEN
                A$ = "": WHILE A$ = "": A$ = INKEY$: WEND: TOT = 0
                    END IF
            NEXT K
        NEXT J
NEXT I
```

```
13.1
' This program simulates a baseball game.
DEFINT A-W
RANDOMIZE TIMER
CLS : PRINT
PRINT SPACE$ (8) ;
FOR I = 1 TO 9: PRINT I; : NEXT I: PRINT " SCORE"
PRINT SPACE$(8); : FOR I = 1 TO 33: PRINT "-"; : NEXT I: PRINT
PRINT "TEAM A !"; SPACE$(27); "!"
PRINT "TEAM B !"; SPACE$ (27); "!"
FOR IN = 1 TO 9
    FOR T = 1 TO 2
        S=0: B=0:W= W:R=0: O = 0
        WHILE O < 3
        X = RND (3)
        IF X < . 4 THEN S = S + 1: STOT = STOT + 1
        IF X >= . 4 THEN B = B + 1: BTOT = BTOT + 1
        IF S = 3 THEN O = O + 1: OTOT = OTOT + 1: S = 0: W = 0
        IF B = 4 THEN W = W + 1: WTOT = WTOT + 1: B = 0: S = 0
        IF W = 4 THEN R = R + I: R(T) = R(T) + I: W = 3
        WEND
        LOCATE 3 + T, 6 + IN * 3: PRINT R;
        NEXT T
NEXT IN
LOCATE 4, 39: PRINT USING "##"; R(1)
LOCATE 5, 39: PRINT USING "##"; R(2)
PRINT
PRINT "TOTAL # OF STRIKES:"; STOT
PRINT "TOTAL # OF BALLS:"; BTOT
PRINT "TOTAL # OF WALKS:"; WTOT
PRINT "TOTAL # OF STRIKE OUTS:"; OTOT
```

```
'3.2
```

'3.2
' This program displays the units digit in a power expression.
' This program displays the units digit in a power expression.
DEFINT A-Z
DEFINT A-Z
INPUT "Enter A, X: "; A(1), X(1)
INPUT "Enter A, X: "; A(1), X(1)
INPUT "Enter B, Y: "; A(2), X(2)
INPUT "Enter B, Y: "; A(2), X(2)
INPUT "Enter C, Z: "; A(3), X(3)
INPUT "Enter C, Z: "; A(3), X(3)
FOR I = 1 TO 3
FOR I = 1 TO 3
POW = 1
POW = 1
FOR J = 1 TO X(I)
FOR J = 1 TO X(I)
POW = POW * A(I)
POW = POW * A(I)
C = INT(POW / 10)
C = INT(POW / 10)
POW = POW - C * 10
POW = POW - C * 10
NEXT J
NEXT J
SUM = SUM + POW
SUM = SUM + POW
NEXT I
NEXT I
C = INT(SUM / 10)
C = INT(SUM / 10)
PRINT SUM - C * 10

```
PRINT SUM - C * 10
```

13.3
' This program displays all digits in $\mathrm{X} \wedge$ ^. 1
DEFINT A-Z
DIM A (200)
INPUT "Enter X, Y: "; X, Y
A(1) = 1: DIG = 1
FOR I = 1 TO Y
FOR J = 1 TO DIG
A $(J)=A(J) * X+C$
C = INT (A (J) / 10)
A(J) $=A(\mathrm{~J})-C * 10$
NEXT J
WHILE C > 0
CC = INT(C / 10): \quad DIG $=$ DIG +1
$A(D I G)=C-C C * 10: C=C C$
WEND
NEXT I
FOR I = DIG TO 1 STEP -1
PRINT USING "\#"; A(I);
NEXT I

```
13.4
' This program assigns user LOGON IDs to names.
INPUT "Enter name: "; N$(1): T = 1
WHILE N$(T) <> "END"
    T = T + I
    INPUT "Enter name: "; N$(T)
WEND
' Extract parts of name for initials
T = T - I
FOR I = 1 TO T
    FOR J = 1 TO LEN(N$ (I))
        MD$ = MID$ (N$ (I), J, I)
        IF MD$ <> " " THEN
            W$ = W$ + MD$
        ELSE
                IF F = I THEN M$(I) = W$: M = 1
                IF F = 0 THEN F$(I) = W$: F = 1
                W$ = ""
        END IF
    NEXT J
    IF M = 0 THEN M$(I) = "X"
    L$(I) = W$: W$ = "": F = 0: M = 0
    INIT$(I) = LEFT$(F$(I), I) + LEFT$ (M$ (I), I) + LEFT$(L$ (I), I)
    IN2$(I) = INIT$(I): N2$(I) = L$(I) + " " + F$(I):C(I) = I
NEXT I
' Sort Initials
FOR I = 1 TO T - 1
    FOR J = I + I TO T
        IF IN2$(I) > IN2$(J) THEN
            SWAP IN2$(I), IN2$(J): SWAP N2$(I), N2$(J): SWAP C(I), C(J)
        END IF
    NEXT J
NEXT I
' Sort names within same initials and assign numbers
J = 0
WHILE J < T - 1
    I = J + I: J = I + 1
    WHILE (IN2$(I) <> IN2$(J)) AND (I < T)
        I = I + I: J = J + I
    WEND
    WHILE (IN2$(I) = IN2$(J)): J = J + 1: WEND: J = J - 1
    FOR A = I TO J - I
        FOR B = A + 1 TO J
                IF N2$(A) > N2$(B) THEN
                    SWAP N2$(A), N2$(B): SWAP C(A), C(B)
                END IF
        NEXT B
    NEXT A
' Assign numbers for middle initial
    FOR A = I TO J
        MID$(INIT$ (C (A)), 2, 1) = MID$(STR$(A - I + 1), 2, 1)
    NEXT A
WEND
FOR I = 1 TO T
```

PRINT N\$ (I) ; SPACE\$ (19 - LEN (N\$ (I))) " "SD"; INIT\$(I); "1" NEXT I

```
'3.5
' This program displays the digits 0 - 9 in enlarged form.
            1 The data contains the
            2 3 line segment #s (on the left)
            4 that need to be displayed to
            5 6 produce the corresponding
            7 digits: 0,1,2,3,4,5,6,7,8,9
DATA 123567,36,13457,13467,2346,12467,124567,136,1234567,12346
FOR N = 0 TO 9
    CLS : READ A$
    FOR J = 1 TO LEN (A$)
        X = VAL (MID$ (A$, J, 1))
        SELECT CASE X
                CASE 1: LOCATE 1, 1: PRINT STRING$ (11, "*")
                CASE 2: FOR I = 1 TO 8: LOCATE I, 1: PRINT "*": NEXT I
                CASE 3: FOR I = 1 TO 8: LOCATE I, 11: PRINT "*": NEXT I
                CASE 4: LOCATE 8, 1: PRINT STRING$(11, "*")
                CASE 5: FOR I = 1 TO 8: LOCATE I + 7, 1: PRINT "*": NEXT I
                CASE 6: FOR I = 1 TO 8: LOCATE I + 7, 11: PRINT "*": NEXT I
                CASE 7: LOCATE 15, 1: PRINT STRING$(11, "*")
            END SELECT
    NEXT J
    SLEEP (1)
NEXT N
```

13.6
' This program will evaluate an expression with ().
INPUT "Enter expression: "; A\$
FOR I = 1 TO LEN (A\$)
M\$ = MID\$ (A\$, I, 1)
IF M\$ $=$ " (" THEN $P=P+1: P 1(P)=S+1$
IF M\$ = "+" OR M\$ = "-" THEN S = S + 1: SY\$ (S) = M\$
IF M\$ >= "O" AND M\$ <= "9" THEN N = N + 1: NUM (N) = VAL (M\$)
IF M\$ = ") " THEN
FOR J = P1 (P) TO S
IF SY\$ $(J)="-"$ THEN $\operatorname{NUM}(J+1)=\operatorname{NUM}(J)-\operatorname{NUM}(J+1)$
$\operatorname{IF} \operatorname{SY}(J)="+" \operatorname{THEN} \operatorname{NUM}(J+1)=\operatorname{NUM}(J)+\operatorname{NUM}(J+1)$
NEXT J
$\mathrm{N}=\mathrm{P} 1(\mathrm{P}): \operatorname{NUM}(\mathrm{N})=\operatorname{NUM}(\mathrm{S}+1)$
$S=P 1(P)-1: P=P-1$
END IF
NEXT I
FOR I = 1 TO S
IF SY\$ (I) = " - " THEN NUM (I + I) = NUM (I) - NUM (I + I)
IF SY\$ $(I)="+" \operatorname{THEN} \operatorname{NUM}(I+1)=\operatorname{NUM}(I)+\operatorname{NUM}(I+1)$
NEXT I
PRINT NUM (N)

```
13.7
' This program displays the two pay days for a given month.
DIM MON(12), MNAME$ (12)
DATA MONDAY,TUESDAY,WEDNESDAY,THURSDAY, FRIDAY, SATURDAY, SUNDAY
DATA JANUARY, FEBRUARY,MARCH,APRIL,MAY, JUNE, JULY, AUGUST
DATA SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER
DATA 31,28,31,30,31,30,31,31,30,31,30,31
FOR I = 1 TO 7: READ DNAME$ (I): NEXT I
FOR I = 1 TO 12: READ MNAME$(I) : NEXT I
FOR I = 1 TO 12: READ MON(I): NEXT I
H = 1
INPUT "Enter holiday MM, DD: "; MHOL(H), DHOL(H)
WHILE MHOL(H) > 0
    H=H + I
    INPUT "Enter holdiay MM, DD: "; MHOL(H), DHOL(H)
WEND
H=H-1
PRINT : INPUT "Enter month #: "; MNUM: PRINT
WHILE MNUM > 0
    DAYS(1) = 0
    FOR I = 1 TO MNUM - 1
        DAYS(1) = DAYS(1) + MON(I)
    NEXT I
    DAY(1) = 15: DAY(2) = MON (MNUM)
    DAYS (2) = DAYS(1) + DAY(2)
    DAYS (1) = DAYS(1) + DAY(1)
    FOR T = 1 TO 2
        HOL = 1
' Decrement days counters if holiday or weekend
        WHILE HOL = 1 OR WKEND = 1
            HOL = 0: WKEND = 0
            FOR I = 1 TO H
                    IF MHOL(I) = MNUM AND DAY(T) = DHOL(I) THEN
                        DAY(T) = DAY(T) - 1: DAYS(T) = DAYS(T) - 1: HOL = 1
                    END IF
            NEXT I
            X = DAYS(T) MOD 7
            IF X = 5 OR X = 6 THEN '5 = Saturday or 6 = Sunday
                    DAY(T) = DAY(T) - 1: DAYS(T) = DAYS(T) - 1: WKEND = 1
            END IF
        WEND
        PRINT DNAMES (X + 1); " "; MNAME$ (MNUM) ; DAY(T)
    NEXT T
    PRINT : INPUT "Enter month #: "; MNUM: PRINT
WEND
```

```
13.8
' This program will display 3 x 3 magic squares.
INPUT "Enter digit: "; DIG
INPUT "Enter row, col: "; ROW, COL
DATA 6,7,2
DATA 1,5,9
DATA 8,3,4
FOR I = 1 TO 3: FOR J = 1 TO 3: READ A(I, J): NEXT J, I
ROT = 1
WHILE (A(ROW, COL) <> DIG) AND (ROT < 4)
' Rotate outer numbers clockwise, at most 3 times
    X = A(1, 1):A(1, 1) = A (3, 1):A(3, 1) = A (3, 3)
    A(3, 3) = A(1, 3):A(1, 3) = X
    X = A(1, 2):A(1, 2) = A(2, 1):A(2,1)=A(3, 2)
    A(3,2)=A(2,3):A(2, 3) = X
    ROT = ROT + 1
WEND
IF A(ROW, COL) <> DIG THEN PRINT "NO SOLUTION": END
FOR P = 1 TO 2
    FOR I = 1 TO 3
        FOR J = 1 TO 3
            PRINT A(I, J);
        NEXT J: PRINT
    NEXT I: PRINT
    IF P = 1 THEN
        IF (ROW = 1 AND COL = 2) OR (ROW = 3 AND COL = 2) THEN
        Swap with respect to 2nd column
            SWAP A(1, 1), A(1, 3): SWAP A(2, 1), A(2, 3)
            SWAP A (3, 1), A (3, 3)
        END IF
        IF (ROW = 1 AND COL = 1) OR (ROW = 3 AND COL = 3) THEN
        Swap with respect to main diagonal
            SWAP A(1, 2), A(2, 1): SWAP A(1, 3), A(3, 1)
            SWAP A(3, 2), A(2, 3)
        END IF
        IF (ROW = 1 AND COL = 3) OR (ROW = 3 AND COL = 1) THEN
        Swap with respect to minor diagonal
            SWAP A(2, 1), A(3, 2): SWAP A(1, 1), A(3, 3)
            SWAP A(1, 2), A(2, 3)
        END IF
        IF (ROW = 2 AND COL = 1) OR (ROW = 2 AND COL = 3) THEN
        Swap with respect to 2nd row
            SWAP A(1, 1), A(3, 1): SWAP A(1, 2), A(3, 2)
            SWAP A(1, 3), A(3, 3)
        END IF
    END IF
NEXT P
```

```
13.9
' This program will display a pie graph.
DIM A(21, 21)
INPUT "Enter 3 percentages: "; P(1), P(2), P(3)
A$(1) = "A": A$(2) = "D": A$ (3) = "N"
CLS : PI = 3.14159
' Draw circle
FOR I = -PI / 2 TO 3 / 2 * PI STEP .1
    X = COS(I) * 10: Y = SIN(I) * 10
    LOCATE 11 + Y, 11 + X: PRINT "*": A(11 + Y, 11 + X) = 1
NEXT I
' Draw 3 line segments from center
FOR S = 0 TO 2
    SUM = SUM + P(S)
    I = -PI / 2 + 2 * PI * SUM / 100
    FOR R = 0 TO 10
            X = COS(I) * R: Y = SIN(I) * R
            LOCATE 11 + Y, 11 + X: PRINT "*": A(11 + Y, 11 + X) = 1
        NEXT R
NEXT S
A$ = INPUT$(1): SUM = 0
' Fill regions with letters
FOR S = 1 TO 3
        LSUM = SUM: SUM = SUM + P (S)
        FOR L = LSUM TO SUM
        I = -PI / 2 + 2 * PI * L / 100
        FOR R = 1 TO 9
            X = COS(I) * R: Y = SIN(I) * R
            IF A(11 + Y, 11 + X) = 0 THEN
                    LOCATE 11 + Y, 11 + X: PRINT A$(S)
            END IF
        NEXT R
        NEXT L
NEXT S
```

```
'3.10
' This program will convert large numbers in base 2,4,8,16.
'
DEFINT A-Z
DIM A(255)
INPUT "Enter numeral: "; NUM$
INPUT "Enter base M: "; M
INPUT "Enter base N: "; N
L = LEN (NUM$ )
DIGM = INT(LOG(M) / LOG(2) + .001)
DIGN = INT(LOG (N) / LOG(2) + .001)
PAD = DIGN - (DIGM * L MOD DIGN) : IF PAD = DIGN THEN PAD = 0
FOR I = 1 TO PAD: A(I) = 0: NEXT I
' Convert from base M to base 2
FOR I = 1 TO L
    D$ = MID$(NUM$, I, 1)
    NUM = INSTR("0123456789ABCDEF", D$) - I
    FOR J = DIGM - 1 TO 0 STEP - 1
            X = INT(NUM / 2 ^ J)
            IND = I * DIGM - J + PAD
            A(IND) = X
            NUM = NUM - X * 2 ^ J
        NEXT J
NEXT I
' Convert from base 2 to base N
LIND = DIGM * L + PAD: ZERO = 1
FOR I = 0 TO (LIND / DIGN) - 1
    SUM = 0
        FOR J = 1 TO DIGN
            IND = I * DIGN + J
            SUM = SUM + A(IND) * 2 ^ (DIGN - J)
        NEXT J
        IF ZERO = O OR SUM > 0 THEN
            ZERO = 0
            PRINT MID$("O123456789ABCDEF", SUM + 1, 1);
        END IF
NEXT I
```


FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '92 BASIC PROGRAM SOLUTIONS

'1.1
' This program displays the company name: GTEDS.
'
PRINT "GGGGG TTTTT EEEEE"
PRINT "G T E"
PRINT "G GGG T EEEEE DATA SERVICES"
PRINT "G G T E"
PRINT "GGGGG T EEEEE"

```
'1.2
' This program will display the company name in a year.
'
INPUT "Enter year:"; YEAR
IF YEAR < 1920 THEN
    PRINT "RICHLAND CENTER TELEPHONE COMPANY"
ELSE
    IF YEAR < 1926 THEN
            PRINT "COMMONWEALTH TELEPHONE COMPANY"
        ELSE
            IF YEAR < 1935 THEN
            PRINT "ASSOCIATED TELEPHONE UTILITIES COMPANY"
        ELSE
            IF YEAR < 1959 THEN
                    PRINT "GENERAL TELPHONE CORPORATION"
            ELSE
                    IF YEAR < 1982 THEN
                            PRINT "GENERAL TELPHONE & ELECTRONICS CORPORATION"
                    ELSE
                            PRINT "GTE CORPORATION"
                    END IF
            END IF
        END IF
        END IF
END IF
```

'1.3
' This program will determine company's ranking in Forbes.
'
INPUT "Enter 1991 rank:"; RANK
INPUT "Enter number of places:"; PLACES
PRINT RANK - PLACES

```
'1.4
' This program will indent GTE's 6 operations.
INPUT "Enter number of spaces:"; X
PRINT "GTE TELPHONE OPERATIONS"
PRINT SPACE$ (X) ; "GTE GOVERNMENT SYSTEMS"
PRINT SPACE$(X * 2); "GTE MOBILE COMMUNICATIONS"
PRINT SPACE$ (X * 3) ; "GTE INFORMATION SERVICES"
PRINT SPACE$(X * 4); "GTE SPACENET"
PRINT SPACE$(X * 5); "GTE AIRFONE"
'1.5
' This program will display # of WHOLE YEARS GTEDS existed.
INPUT "Enter M, Y:"; M, Y
IF M < 10 THEN X = 1 ELSE X = 0
PRINT Y - 1967 - X; "YEARS"
'1.6
' This program will center a title and name in a box.
I
INPUT "Enter title:"; T$
INPUT "Enter name:"; N$
PRINT STRING$(24, "*")
PRINT "*"; SPACE$(22); "*"
L = LEN(T$) + LEN(N$) + 1
SP1 = INT((22 - L) / 2)
SP2 = (22 - L) - SP1
PRINT "*"; SPACE$(SP1) ; T$; " "; N$; SPACE$(SP2); "*"
PRINT "*"; SPACE$(22); "*"
PRINT STRING$(24, "*")
'1.7
' This program will display a 4-line statement for ISOP.
INPUT "Enter name:"; N$
INPUT "Enter title:"; T$
INPUT "Enter group:"; G$
PRINT N$; " IS A "; T$; " WITHIN THE"
PRINT G$; " GROUP AND"
PRINT "HAS BEEN SELECTED TO PARTICIPATE IN"
PRINT "THE ISOP."
'1.8
' This program will display a dollar sign next to an amount.
INPUT "Enter amount: "; AMOUNT$
A = VAL (AMOUNT$)
IF A >= 2000 THEN PRINT "$2000.00" ELSE PRINT "$"; AMOUNT$
```

'1.9
' This program will display an acronym for business words. 1
INPUT "Enter words: "; ST\$
PRINT LEFT\$ (ST\$, 1);
FOR I = 2 TO LEN(ST\$) - 1
IF MID\$ (ST\$, I, 1) = " " THEN PRINT MID\$ (ST\$, I + 1, 1); NEXT I
'1.10
' This program will calculate QUALITY hours and minutes. '
INPUT "Enter number of technicians, N:"; N
INPUT "Enter number of minutes, M:"; M
TOTAL $=50 * 5 * N * M$
HOURS $=$ INT (TOTAL / 60)
MIN = TOTAL - HOURS * 60
PRINT HOURS; "HOURS"; MIN; "MINUTES"

```
'2.1
' This program will display a speech indented.
'
I = 0
WHILE (LINE$(I) > "") OR (I = 0)
    I = I + I
    INPUT "Enter line:"; LINE$(I)
WEND
FOR J = 1 TO I - 1
    CH$ = MID$ (LINE$ (J) , 1, 1)
    IF CH$ = "I" THEN PRINT LINE$(J)
    IF CH$ >= "A" AND CH$ <= "H" THEN PRINT SPACE$ (4) ; LINE$ (J)
    IF VAL (CH$) > 0 THEN PRINT SPACE$ (8) ; LINE$ (J)
NEXT J
'2. 2
' This program will display a number in words.
DIM WORDS$ (27)
DATA ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN
DATA ELEVEN,TWELVE,THIRTEEN, FOURTEEN, FIFTEEN, SIXTEEN
DATA SEVENTEEN, EIGHTEEN, NINETEEN, TWENTY, THIRTY, FOURTY
DATA FIFTY,SIXTY,SEVENTY,EIGHTY,NINETY
FOR I = 1 TO 27: READ WORDS$(I): NEXT I
INPUT "Enter number:"; NUM
IF NUM < 20 THEN PRINT WORDS$ (NUM) : END
TENS = INT(NUM / 10)
UNITS = NUM - TENS * 10
PRINT WORDS$(18 + TENS);
IF UNITS > 0 THEN PRINT "-"; WORDS$(UNITS)
```

```
'2.3
' This program will display selected items from a NRD menu.
DATA "DEMONSTRATED INTEREST IN INFORMATION MANAGMENT."
DATA "DEMONSTRATED LEADERSHIP SKILLS."
DATA "STRONG GPA/PERFORMANCE HISTORY."
DATA "AT LEAST TWO COURSES IN ANY PROGRAMMING LANGUAGE."
DATA "INTERNSHIP OR WORK EXPERIENCE."
DATA "EFFECTIVE ORAL AND WRITTEN COMMUNICATION SKILLS."
DATA "CAREER DEVELOPMENT POTENTIAL."
FOR I = 1 TO 7: READ CRIT$(I): NEXT I
INPUT "Enter name:"; NAM$
INPUT "Enter degree:"; DEGREE$
FOR I = 1 TO 7
    PRINT USING "#. "; I; : PRINT CRIT$(I)
NEXT I
PRINT
INPUT "Select up to 7 items:"; ITEMS$
CLS
PRINT NAM$: PRINT DEGREE$
NUM = 0
FOR I = 1 TO 7
    I$ = LTRIM$ (STR$(I))
    IF INSTR(1, ITEMS$, I$) > 0 THEN
        NUM = NUM + 1
        PRINT : PRINT USING "#. "; NUM; : PRINT CRIT$(I)
    END IF
NEXT I
'2.4
' This program will rate a speech.
'
DATA SPEECH VALUE,PREPARATION,MANNER,ORGANIZATION
DATA OPENING,BODY OF SPEECH,CONCLUSION
FOR I = 1 TO 7: READ CAT$(I): NEXT I
DATA EXCELLENT,ABOVE AVERAGE,SATISFACTORY
DATA SHOULD IMPROVE,MUST IMPROVE
FOR I = 1 TO 5: READ VERBAL$(I): NEXT I
FOR I = 1 TO 7
    PRINT "Enter rating for "; CAT$(I);
    INPUT ": "; RATING$(I)
NEXT I
FOR I = 1 TO 7
    NUM = 1
    WHILE (RATING$(I) <> VERBAL$ (NUM)) AND (NUM < 7)
        NUM = NUM + 1
    WEND
    PRINT CAT$(I); ":"; NUM
    TOTAL = TOTAL + NUM
NEXT I
200 PRINT
210 AVE = TOTAL / 7
220 PRINT USING "AVERAGE NUMERICAL RATING = #.#"; AVE
230 PRINT "SPEECH RATING = "; VERBAL$(INT(AVE + .5))
```

```
'2.5
', This program will format GTEDS MISSION statement.
DATA "BE THE CUSTOMER-ORIENTED LEADER AND PROVIDER-OF-CHOICE "
DATA "OF QUALITY INFORMATION PRODUCTS AND SERVICES IN THE "
DATA "TELECOMMUNICATIONS MARKETPLACE AND SELECTED OTHER "
DATA "RELATED MARKETS IN SUPPORT OF GTE'S TELOPS GOALS."
FOR I = 1 TO 4: READ ST$(I) : NEXT I
INPUT "Enter N:"; N
STATE$ = ST$(1) + ST$(2) + ST$(3) + ST$(4)
FOR I = 1 TO LEN(STATE$)
    CH$ = MID$(STATE$, I, 1)
    WORD$ = WORD$ + CH$
    IF (CH$ = " " OR CH$ = "-" OR CH$ = ".") THEN
        NUMCH = LEN(LINE$) + LEN(WORD$)
        IF CH$ = " " THEN NUMCH = NUMCH - 1
        IF NUMCH > N THEN PRINT LINE$: LINE$ = WORD$
        IF NUMCH <= N THEN LINE$ = LINE$ + WORD$
        WORD$ = ""
    END IF
NEXT I
PRINT LINE$; WORD$
'2.6
' This program will change (.) to (?) at end of sentence.
'
DATA WHAT,WHY,HOW,WHO,WHERE
FOR I = 1 TO 5: READ QUEST$(I): NEXT I
INPUT "Enter paragraph:"; PAR$: PRINT
FIRSTW = -1
FOR I = 1 TO LEN(PAR$)
    CH$ = MID$(PAR$, I, 1)
    IF CH$ = " " AND LEN(FIRSTW$) > 0 THEN
            FIRSTW = 0
    ELSE
        IF (CH$ = "." OR CH$ = "!" OR CH$ = "?") THEN
            IF CH$ = "." THEN
                FOR J = 1 TO 5
                    IF FIRSTW$ = QUEST$(J) THEN CH$ = "?"
                    NEXT J
            END IF
            FIRSTW$ = "": FIRSTW = -1
        ELSE
            IF FIRSTW AND (CH$ <> " ") THEN FIRSTW$ = FIRSTW$ + CH$
        END IF
    END IF
    PRINT CH$;
NEXT I
```

```
'2.7
' This program will print names in the office at a beep.
'
DATA DAVID,0700,1600
DATA DON,0800,1700
DATA DOUG,0730,1630
DATA GRANDVILLE,1230,2100
DATA JAMES,1130,2200
DATA JIM,0900,1800
DATA JOHN,0700,1600
DATA LINDA,1230,2300
DATA MARIE,0700,1600
DATA MATT,1230,2300
DATA PAULA,0700,1600
DATA ROBERT,0800,1700
DATA SHELLEY,0630,1530
DATA TOM,1100,1930
DIM NAM$(14), START(14), QUIT(14)
FOR I = 1 TO 14
    READ NAM$(I), START(I), QUIT(I)
NEXT I
INPUT "Enter time:"; TIME
INPUT "Enter day:"; DAY$
FOR I = 1 TO 14
    IF (START(I) <= TIME) AND (TIME <= QUIT(I)) THEN
        IF (DAY$ <> "SUNDAY") AND (DAY$ <> "SATURDAY") THEN
        INOFFICE = -1
        IF (NAM$(I) = "JAMES") AND (DAY$ = "MONDAY") THEN INOFFICE = 0
        IF (NAM$(I) = "LINDA") AND (DAY$ = "FRIDAY") THEN INOFFICE = 0
        IF (NAM$(I) = "MATT") AND (DAY$ = "MONDAY") THEN INOFFICE = 0
        IF INOFFICE THEN
            NUM = NUM + 1
            IF NUM = 1 THEN PRINT NAM$(I);
            IF NUM > 1 THEN PRINT ", "; NAM$(I);
        END IF
        END IF
    END IF
NEXT I
IF NUM = O THEN PRINT "NONE"
```

```
'2. 8
' This program will randomly assign titles to a team.
\prime
DATA WILL,DARLENE,JEFF,LIZ,LORI,MARY,PING
FOR I = I TO 7: READ NAM$(I): NEXT I
DATA AUTHOR,MODERATOR, READER,RECORDER, INSPECTOR
FOR I = 1 TO 5: READ TITLE$(I) : NEXT I
RANDOMIZE TIMER
INPUT "Enter author's name:"; TNAME$(1)
' Choose moderator
IF TNAME$ (1) = NAM$ (1) THEN
        TNAME$ (2) = NAM$ (2)
ELSE
        IF TNAME$ (1) = NAM$ (2) THEN
            TNAME$ (2) = NAM$ (1)
        ELSE
            TNAME$ (2) = NAM$(INT(RND (3) * 2) + 1)
        END IF
END IF
' Choose next 3 title names
FOR I = 3 TO 5
        VALID = 0
        WHILE NOT VALID
            VALID = - I
            X = INT(RND (3) * 7) + 1
            FOR J = 1 TO I
                    IF NAM$ (X) = TNAME$ (J) THEN VALID = 0
            NEXT J
        WEND
        TNAME$ (I) = NAM$ (X)
NEXT I
' Display all 5 titles and names.
FOR I = 1 TO 5
        PRINT TITLE$(I); " - "; TNAME$(I)
NEXT I
```

'2.9
' This program will sort a list of names with area codes. '
DIM NAM\$ (15)
INPUT "Enter two area codes:"; AREA1, AREA2
INPUT "Enter number of names:"; NUM
FOR I = 1 TO NUM
INPUT "Enter name:"; NAM\$(I)
NEXT I
FOR I = 1 TO NUM - 1
FOR J = I + 1 TO NUM
IF NAM\$ (I) > NAM\$ (J) THEN SWAP NAM\$ (I), NAM\$ (J)
NEXT J
NEXT I
IF AREA1 > AREA2 THEN A = AREA1: AREA1 = AREA2: AREA2 = A
MID $=$ INT ((NUM + 1) / 2)
FOR I = 1 TO MID
PRINT AREA1; "- "; NAM\$(I)
NEXT I
FOR I = MID + 1 TO NUM
PRINT AREA2; "- "; NAM\$(I)
NEXT I

```
'2.10
' This program will adjust a golf score by handicap.
DATA 5,4,4,4,3,4,4,3,5
FOR I = 1 TO 9: READ PAR(I): NEXT I
INPUT "Enter handicap:"; HAND
PRINT "Enter gross scores:";
INPUT G(1), G(2), G(3), G(4), G(5), G(6), G(7), G(8), G(9)
PRINT "HOLE #:";
FOR I = 1 TO 9: PRINT USING "####"; I; : NEXT I
PRINT : PRINT "PAR: ";
FOR I = 1 TO 9
    PRINT USING "####"; PAR(I);
    PARTOT = PARTOT + PAR(I)
NEXT I
PRINT : PRINT "GROSS: ";
FOR I = 1 TO 9
    PRINT USING "####"; G(I);
    GTOT = GTOT + G(I)
NEXT I
PRINT : PRINT "ADJUST:";
' Determine # of tripple and double bogeys allowed
IF HAND > 9 THEN BOG(3) = HAND - 9: BOG(2) = 9 - BOG(3)
IF HAND <= 9 THEN BOG(2) = HAND: BOG(1) = 9 - BOG(2)
' Adjust the gross scores by Handicap
FOR I = 1 TO 9
    DIFF = G(I) - PAR(I)
    ADJUSTED = 0
    B = 3
    WHILE NOT ADJUSTED AND (B > 0)
            IF (BOG(B) > 0) AND (DIFF >= B) THEN
                    A(I) = PAR(I) + B
                    BOG(B) = BOG(B) - 1
                    ADJUSTED = -1
            END IF
            B = B - 1
        WEND
        IF NOT ADJUSTED THEN A(I) = G(I)
NEXT I
' Display the adjusted scores and totals
FOR I = 1 TO 9
    PRINT USING "####"; A(I);
    ATOT = ATOT + A(I)
NEXT I
PRINT : PRINT
PRINT "PAR TOTAL:"; PARTOT
PRINT "GROSS TOTAL:"; GTOT
PRINT "ADJUST TOTAL:"; ATOT
PRINT "ROUND HANDICAP:"; ATOT - PARTOT
```

```
'3.1
' This program will move a triangle of GTEDS around the screen.
I
\begin{tabular}{llll} 
DATA & \("\) & & \\
DATA & \("\) & \multicolumn{2}{c}{ G } \\
DATA & \("\) & \multicolumn{2}{c}{ T } \\
DATA & \("\) & E & E \\
DATA & \("\) & D & D \\
DATA & \("\) & SDETGTEDS & \("\) \\
DATA & \("\) & &
\end{tabular}
FOR I = 1 TO 7: READ A$(I) : NEXT I
CLS
ROW = 9: COL = 34
WHILE CH$ <> CHR$ (27)
    FOR I = 1 TO 7
        LOCATE ROW + I, COL: PRINT A$(I);
        NEXT I
        C$ = INKEY$: IF C$ > " " THEN CH$ = C$
        FOR I = 1 TO 100: NEXT I
        SELECT CASE UCASE$ (CH$)
            CASE "I": ROW = ROW - 1
            CASE "M": ROW = ROW + 1
            CASE "J": COL = COL - 1
            CASE "K": COL = COL + 1
        END SELECT
        IF ROW = 0 THEN ROW = 1: CH$ = ""
        IF COL = 0 THEN COL = 1: CH$ = ""
        IF ROW = 18 THEN ROW = 17: CH$ = ""
        IF COL = 69 THEN COL = 68: CH$ = ""
WEND
```

```
13.2
' This program will display a date in 1992 after # of days.
'
DIM MONTH(12), MNAME$ (12)
DATA TUESDAY,WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, MONDAY
FOR I = 1 TO 6: READ DAY$(I): NEXT I
DATA 31,29,31,30,31,30,31,31,30,31,30,31
FOR I = 1 TO 12: READ MONTH(I): NEXT I
DATA JANUARY, FEBRUARY,MARCH, APRIL,MAY, JUNE , JULY, AUGUST
DATA SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER
FOR I = 1 TO 12: READ MNAME$(I) : NEXT I
INPUT "Enter X:"; X
X = X + I
D = (X MOD 6) + 1
PRINT DAY$ (D) ; " ";
X = X + INT((X + I) / 6)
I = 1
WHILE SUM + MONTH(I) < X
    SUM = SUM + MONTH(I): I = I + I
WEND
PRINT MNAME$(I) ; X - SUM
IF DAY$(D) <> "SATURDAY" THEN END
    X = X + I
    WHILE SUM + MONTH(I) < X
        SUM = SUM + MONTH(I): I = I + I
    WEND
    PRINT "SUNDAY "; MNAME$(I); X - SUM
```

```
'3.3
' This program will release program modules for PWS.
WHILE NOT ALLDONE
    I = NUM + I
    INPUT "Enter name, program:"; NAME$(I), PROG$(I)
' Find previous Name/Prog or make addition
    J = 1
    NOTFOUND = (NAME$(J) <> NAME$(I) OR PROG$ (J) <> PROG$ (I))
    WHILE (J < I) AND NOTFOUND
        J=J + 1
        NOTFOUND = (NAME$ (J) <> NAME$ (I) OR PROG$ (J) <> PROG$ (I))
        WEND
        I = J
        IF I > NUM THEN NUM = I
        INPUT "Enter completed, release:"; COMP$(I), REL$(I)
        IF REL$(I) = "Y" THEN COMP$(I) = "Y"
        MODCOMP = (COMP$(I) = "Y")
' Check if Module completed by all, and at least }1\mathrm{ released
    IF MODCOMP THEN
            MODREL = 0
            FOR J = 1 TO NUM
                IF PROG$ (J) = PROG$ (I) THEN
                IF COMP$(J) <> "Y" THEN MODCOMP = 0
                IF REL$(J) = "Y" THEN MODREL = -1
                    END IF
            NEXT J
' If Module completed by all and 1 or more released
        IF (MODCOMP AND MODREL) THEN
            PRINT "MODULE "; PROG$(I); " HAS BEEN RELEASED"
            MODULE$ = PROG$(I)
            FOR J = 1 TO NUM
                IF PROG$ (J) = MODULE$ THEN PROG$ (J) = " "
            NEXT J
            ALLDONE = -1
            FOR J = 1 TO NUM
                IF PROG$(J) <> "" THEN ALLDONE = 0
            NEXT J
        END IF
    END IF
WEND
```

```
13.4
' This program will produce acronyms for phone numbers.
'
DIM A$ (18), B$ (18)
DATA AGENT, SOAP, MONEY, JEWEL, BALL, LOANS, CARE, SAVE, CALL, PAVE
DATA KEEP, KINGS, KNIFE, KNOCK, JOINT, JUICE , LOBBY, RATE
FOR I = 1 TO 18: READ B$(I): A$(I) = B$(I) : NEXT I
L1$ = " ADGJMPTW"
L2$ = " BEHKNRUX"
L3$ = " CFILOSVY"
' Sort the data alphabetically
FOR I = 1 TO 17
    FOR J = I + 1 TO 18
        IF A$(I) > A$ (J) THEN SWAP A$ (I) , A$ (J)
    NEXT J
NEXT I
INPUT "Enter phone #:"; PH$
P4$ = MID$(PH$, 5, 4): P5$ = MID$(PH$, 3, 1) + P4$
' Convert words to number strings
FOR I = 1 TO 18
    L = LEN(A$ (I)) : NUM$ = ""
    FOR J = 1 TO L
            K = 1: C$ = MID$(A$ (I), J, 1): NOMATCH = - 1
            WHILE NOMATCH
                K = K + I
                IF MID$(L1$, K, 1) = C$ THEN NOMATCH = 0
                IF MID$(L2$, K, 1) = C$ THEN NOMATCH = 0
                IF MID$ (L3$, K, 1) = C$ THEN NOMATCH = 0
            WEND
            NUM$ = NUM$ + CHR$ (48 + K)
    NEXT J
    IF L = 4 AND NUM$ = P4$ THEN PRINT MID$ (PH$, 1, 4); A$ (I)
    IF L = 5 AND NUM$ = P5$ THEN
            PRINT MID$ (PH$, 1, 2); MID$ (A$ (I), 1, 1); "-";
            PRINT MID$(A$(I), L - 3, 4)
    END IF
NEXT I
```

```
13. 5
' This program will find seven 7 -digit squares in base 8 .
NUM \(=1242:\) SNUM \(=0\)
WHILE SNUM < 7
    NUM1\$ \(=\) MID\$ (STR\$ (NUM) , 2 )
' Convert NUM1\$ to base 10 number NUM1V
    NUM1V \(=0\)
    FOR I = 1 TO 4
        DIGIT = ASC (MID\$ (NUM1\$, I, 1)) - ASC("0")
        POWER = 1
        FOR J = 1 TO LEN (NUM1\$) - I
            POWER = POWER * 8
            NEXT J
            NUM1V \(=\) NUM1V + DIGIT * POWER
    NEXT I
    NUM1V \(=\) NUM1V * NUM1V
    SQUARE\$ \(=" ":\) VALID \(=-1\)
    FOR I = 0 TO 7: DUP (I) \(=0: \mathrm{NEXT}\) I
' Convert NumiV to Base8 number
    \(J=\operatorname{INT}(L O G(N U M 1 V) /\) LOG (8) )
    WHILE ( \(J>=0\) ) AND VALID
        POWER = 1
        FOR K = 1 TO J: POWER = POWER * 8: NEXT K
        \(\mathrm{X}=\) INT (NUM1V / POWER)
' Check for duplicate digits
            IF DUP (X) THEN
                VALID \(=0\)
        ELSE
            \(\operatorname{DUP}(\mathrm{X})=-1\)
            SQUARE\$ \(=\) SQUARE\$ + CHR\$ \((48+X)\)
            NUM1V \(=\) NUM1V - X * POWER
        END IF
        \(J=J-1\)
    WEND
    IF VALID THEN SNUM = SNUM + 1: PRINT SQUARE\$; " "; NUM
' Increment to next base 8 number
    NUM \(=\) NUM \(+1:\) NUMST\$ \(=\) LTRIM\$ (STR\$ (NUM))
    WHILE INSTR (1, NUMST\$, "8") > 0 OR INSTR (1, NUMST\$, "9") > 0
        \(\mathrm{NUM}=\mathrm{NUM}+1\)
        NUMST\$ \(=\) LTRIM\$ (STR\$ (NUM))
    WEND
WEND
```

```
13.6
' This program will find 3 distinct integers that are pairwise
', relatively prime such that they sum to N.
'
INPUT "Enter N:"; N
X = 2 + (N MOD 2)
WHILE (X < INT (N / 3)) AND NOT FOUND
    Y = X + I
    WHILE (Y < INT((N - X) / 2)) AND NOT FOUND
        Z = N - X - Y: FOUND = -1
        FOR I = 2 TO Y
            IF (X MOD I = 0) AND (Y MOD I = 0) THEN FOUND = 0
            IF (X MOD I = 0) AND (Z MOD I = 0) THEN FOUND = 0
            IF (Y MOD I = 0) AND (Z MOD I = 0) THEN FOUND = 0
        NEXT I
        IF FOUND THEN PRINT X; "+"; Y; "+"; Z; "="; N
        IF NOT FOUND THEN Y = Y + 1
    WEND
    Z = Z + I
WEND
```

```
'3.7
' This program will print combinations of 6 soccer players.
'
DATA ANDY,DAN, DOUG,JACK,MIKE, YEHIA
FOR I = 1 TO 6: READ NAME$ (I) : NEXT I
INPUT "Enter number of substitutes:"; NUMOFSUB
L = 6 + NUMOFSUB
FOR I = 7 TO L
    INPUT "Enter name:"; NAME$(I)
NEXT I
' Sort names with substitutes
FOR I = 1 TO L - 1
    FOR J = I + 1 TO L
            IF NAME$ (I) >= NAME$ (J) THEN SWAP NAME$ (I), NAME$ (J)
        NEXT J
NEXT I
'
M=6
FOR I = 1 TO M: A(I) = M - I + I: NEXT I
N = 1: A(1) = A(1) - 1
WHILE N <= M
    A(N) = A(N) + I
    IF N > 1 THEN
            FOR I = N - 1 TO 1 STEP - 1: A(I) = A(I + 1) + 1: NEXT I
        END IF
        IF A (N) <= L - N + I THEN
            S = S + 1
            PRINT S; NAME$ (A (M)) ;
            FOR I = M - 1 TO 1 STEP -1
            PRINT ","; NAME$ (A(I)) ;
            NEXT I
            PRINT
            N = 0
            IF S MOD 24=0 THEN WHILE INKEY$ = "": WEND
        END IF
        N = N + I
WEND
```

```
'3.8
' This program displays the Bill Date and the Due Date.
' January 1, }1992\mathrm{ was a Wednesday
DIM MNAME$(12), MON(12), MHOL(12), DHOL(12)
DATA JANUARY, FEBRUARY,MARCH,APRIL,MAY,JUNE,JULY,AUGUST
DATA SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER
FOR I = 1 TO 12: READ MNAME$(I): NEXT I
DATA 31,29,31,30,31,30,31,31,30,31,30,31
FOR I = 1 TO 12: READ MON(I): NEXT I
DATA TUESDAY,WEDNESDAY,THURSDAY, FRIDAY, SATURDAY, SUNDAY, MONDAY
FOR I = 1 TO 7: READ DNAME$(I): NEXT I
INPUT "Enter month of bill:"; MNUM
INPUT "Enter cycle number:"; CYCLE
INPUT "Enter number of days:"; NUMDAYS
H = 1
INPUT "Enter holiday MM, DD:"; MHOL(H), DHOL(H)
WHILE MHOL(H) > 0
    H = H + l
    INPUT "Enter holiday MM, DD:"; MHOL(H), DHOL(H)
WEND
H = H - 1: PRINT
DAYS(1) = 0
FOR I = 1 TO MNUM - 1
    DAYS(1) = DAYS(1) + MON(I)
NEXT I
DAY(1) = 3 * CYCLE - 2: DAY(2) = DAY(1) + NUMDAYS
DAYS(2) = DAYS(1) + DAY(2)
DAYS(1) = DAYS(1) + DAY(1)
FOR T = 1 TO 2
    HOL = 1: WKEND = 1
' Decrement days counter if holiday or weekend
    WHILE (HOL = 1) OR (WKEND = 1)
        HOL = 0: WKEND = 0
        IF DAY(T) > MON(MNUM) THEN
            DAY (T) = DAY(T) - MON(MNUM)
            MNUM = MNUM + 1
        END IF
        FOR I = I TO H
            IF MHOL(I) = MNUM AND DHOL(I) = DAY(T) THEN
                DAY(T) = DAY(T) + 1
                DAYS(T) = DAYS(T) + 1: HOL = 1
            END IF
        NEXT I
        X = DAYS(T) MOD 7
        IF (X = 4) OR (X = 5) THEN
            Saturday or Sunday
            DAY(T) = DAY(T) + 1
            DAYS(T) = DAYS(T) + 1: WKEND = 1
        END IF
    WEND
    IF T = 1 THEN PRINT "BILL "; ELSE PRINT "DUE ";
    PRINT "DATE: "; DNAME$(X + 1); " "; MNAME$ (MNUM); DAY(T)
NEXT T
```

```
'3.9
', This program will calculate the area of a polygon room.
'
INPUT "Enter number of sides:"; SIDES
FOR I = 1 TO SIDES
        INPUT "Enter movement:"; MOV$
        DIR$(I) = MID$(MOV$, 1, 1)
        L = LEN(MOV$)
        MOV$ = MID$(MOV$, 2, L - 1)
        DIST(I) = VAL (MOV$)
' Subtract Down and Left directions
    IF DIR$(I) = "D" OR DIR$(I) = "L" THEN DIST(I) = -DIST(I)
NEXT I
' Multiply length by width to obtain rectangle area,
' then add or subtract area from overall area.
I = 1: SUM = 0: AREA = 0
WHILE (I <= SIDES)
    SUM = SUM + DIST(I)
    AREA = AREA + (SUM * DIST(I + 1))
    I = I + 2
WEND
PRINT "AREA ="; ABS(AREA); "SQUARE FEET"
```

```
'3.10
' This program will display the reasons a Rubik's Cube is
' unsolvable. Input is to be separated by a space (not a ,)
DATA "TOP: ","FRONT: ","RIGHT: ","BACK: ","LEFT: "
DATA "BOTTOM:"
FOR I = 1 TO 6: READ SIDE$(I): NEXT I
EDGES$ = "T2P2 T6R2 T8F2 T4L2 F4L6 F6R4 "
EDGES$ = EDGES$ + "R6P4 P6L4 F8B2 R8B6 P8B8 L8B4"
FOR I = 1 TO 6
    PRINT "Enter colors on "; SIDE$(I);
    INPUT COLORS$
    FOR J = 1 TO 9
        COL$(I, J) = MID$(COLORS$, J * 2 - 1, 1)
    NEXT J
NEXT I
'
MIDUNIQUE = -1
FOR I = 1 TO 5
    FOR J = I + 1 TO 6
            IF COL$(I, 5) = COL$(J, 5) THEN MIDUNIQUE = 0
    NEXT J
NEXT I
IF NOT MIDUNIQUE THEN
    PRINT "COLORS ON MIDDLE SQUARES ARE NOT UNIQUE"
END IF
FOR K = 1 TO 12
    S1 = INSTR(1, "TFRPLB", MID$(EDGES$, K * 5 - 4, 1))
    N1 = ASC(MID$(EDGES$, K * 5 - 3, 1)) - ASC("0")
    S2 = INSTR(1, "TFRPLB", MID$(EDGES$, K * 5 - 2, 1))
    N2 = ASC(MID$(EDGES$, K * 5 - 1, 1)) - ASC("O")
    IF COL$(S1, N1) = COL$(S2, N2) THEN ENUM = ENUM + 1
NEXT K
PRINT "NUMBER OF EDGE PIECES HAVING SAME COLOR:"; ENUM
```


FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '93 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program displays six lines with "GTEDS".
FOR I = 1 TO 6
    FOR J = 1 TO 7 - I
        PRINT "GTEDS"; SPACE$(I);
    NEXT J
    PRINT
NEXT I
```

'1. 2
' This program displays the number of programmers placed.
INPUT "Enter N:"; N
INPUT "Enter $\mathrm{M}:$ "; M
PRINT N * 15 - M; "PROGRAMMERS"
'1.3
' This program will format the number N million with commas.
'
INPUT "Enter N:"; N
PRINT USING "\#\#,\#\#\#,\#\#\# ACCESS LINES"; N * 1000000!
'1. 4
' This program will total the \# of students on 5 USF campuses.
DATA Tampa,st. Petersburg,Fort Myers,Lakeland, Sarasota
FOR I = 1 TO 5
READ CAMPUS\$
PRINT "Enter \# at "; CAMPUS\$; ":";
INPUT NUM
TOTAL $=$ TOTAL + NUM
NEXT I
PRINT TOTAL; "STUDENTS"
'1. 5
' This program will determine if person qualifies for ISOP.
'
INPUT "Enter name:"; NAME\$
INPUT "Enter level:"; LEVEL
INPUT "Enter desire:"; DESIRE\$
PRINT NAME\$; " IS ";
IF (LEVEL < 5) OR (DESIRE\$ = "NO") THEN PRINT "NOT ";
PRINT "A POSSIBLE CANDIDATE FOR ISOP"

```
'1.6
' This program will display preferred skills for curriculum.
'
INPUT "Enter curriculum:"; CURR$
IF CURR$ = "MVS/COBOL" THEN
    PRINT "COBOL"
    PRINT "JCL"
    PRINT "MVS/ESA"
    PRINT "TSO/ISPF"
    PRINT "VSAM"
    PRINT "ANSI SQL"
    PRINT "DB2"
    PRINT "IMS"
ELSE
    PRINT "C"
    PRINT "UNIX"
    PRINT "ANSI SQL"
    PRINT "OSF/MOTIF"
    PRINT "SHELL PROGRAMMING"
END IF
'1.7
' This program will print the first N letters of alphabet.
'
INPUT "Enter N:"; N
FOR I = 1 TO N
    PRINT CHR$(64 + I);
NEXT I
'1.8
' This program will calculate the increase in salary.
'
INPUT "Enter salary:"; SALARY
INPUT "Enter rating:"; LEVEL$
SELECT CASE LEVEL$
    CASE "EXCELLENT": INCREASE = SALARY * .1
    CASE "ABOVE AVERAGE": INCREASE = SALARY * . 07
    CASE "GOOD": INCREASE = SALARY * . 05
END SELECT
PRINT USING "NEW SALARY = $#####.##"; SALARY + INCREASE
'1.9
' This program will display a Service Order
'
DATA INSTALL,CHANGE,RECORDS,OUT,FROM,TO
INPUT "Enter order: "; ORDER$
CH$ = LEFT$ (ORDER$, 1)
IF LEN(ORDER$) > 1 THEN PRINT CH$: END
READ A$
WHILE LEFT$(A$, 1) <> CH$: READ A$: WEND
PRINT A$
```

'1.10
' This program will compute a GPA for 5 classes.
'
NUM $=5$
FOR I = 1 TO 5
INPUT "Enter grade:"; G\$ SELECT CASE G\$

CASE "A": SUM = SUM + 4
CASE "B": SUM = SUM + 3
CASE "C": SUM = SUM + 2
CASE "D": SUM = SUM + 1
CASE "W": NUM = NUM - 1
END SELECT
NEXT I
PRINT USING "GPA = \#.\#\#\#"; SUM / NUM

```
'2.1
' This program will randomly generate #S between X and Y.
'
RANDOMIZE TIMER
INPUT "Enter N:"; N
INPUT "Enter X, Y:"; X, Y
IF X < Y THEN MIN = X: MAX = Y ELSE MIN = Y: MAX = X
FOR I = 1 TO N
    X = INT(RND (3) * (MAX - MIN + 1)) + MIN
    IF X < O THEN PRINT " ";
    PRINT STR$(X) ;
NEXT I
'2.2
' This program will sort names according to their title.
DATA P, PA,SA,SE,SSE,ASE,SASE
FOR I = 1 TO 7: READ TITLES$(I) : NEXT I
INPUT "Enter N:"; N
FOR I = 1 TO N
    INPUT "Enter name:"; NAM$(I)
    INPUT "Enter title:"; TITLE$
    NAM$(I) = NAM$(I) + " - " + TITLE$
    J = 1
    WHILE TITLES$(J) <> TITLE$: J = J + 1: WEND
    L(I) = J
NEXT I
FOR I = 1 TO N - 1
    FOR J = I + I TO N
        IF L(I) <= L(J) OR (L(I) = L(J) AND NAM$ (I) > NAM$ (J)) THEN
                SWAP NAM$ (I), NAM$ (J)
                SWAP L(I), L(J)
            END IF
    NEXT J
NEXT I
FOR I = 1 TO N: PRINT NAM$(I) : NEXT I
```

```
'2. 3
', This program will foramt a COBOL declaration.
'
DIM FIELD$ (15)
I = 0
WHILE (FIELD$(I) > "") OR (I = 0)
    I = I + I
    INPUT "Enter field:"; FIELD$(I)
WEND
FOR J = 1 TO I - 1
        LEVEL$ = MID$ (FIELD$ (J) , 1, 2)
        IF LEVEL$ = "O1" THEN
            INC = 0
        ELSE
            IF LEVEL$ > PREVLEVEL$ THEN INC = INC + 4
            IF LEVEL$ < PREVLEVEL$ THEN INC = INC - 4
        END IF
        PRINT SPACE$ (INC);
        PRINT FIELD$ (J)
        PREVLEVEL$ = LEVEL$
NEXT J
'2.4
' This program will translate a word and calculate blocks.
'
INPUT "Enter word:"; WORD$
NUM$ = ""
FOR I = 1 TO LEN(WORD$)
    NUM = ASC(MID$(WORD$, I, I)) - ASC("A") + I
    NUM$ = NUM$ + MID$ (STR$ (NUM), 2)
NEXT I
PRINT "NUMBER = "; NUM$
BLOCKS = 1
LASTDIGIT = VAL (MID$ (NUM$, 1, 1))
FOR I = 2 TO LEN (NUM$)
    DIGIT = VAL (MID$ (NUM$, I, 1))
    IF DIGIT MOD 2 <> LASTDIGIT MOD 2 THEN BLOCKS = BLOCKS + 1
    LASTDIGIT = DIGIT
NEXT I
PRINT "BLOCKS ="; BLOCKS
```

```
'2.5
' This program will display N formatted telephone #s.
I
INPUT "Enter N:"; N
FOR I = 1 TO N
    INPUT "Enter #:"; NUM$(I)
NEXT I
TOTAL = 1: NUM$(I + 1) = SPACE$ (10)
FOR I = 1 TO N
    NPA$ = MID$ (NUM$ (I), 1, 3)
    NXX$ = MID$ (NUM$ (I) , 4, 3)
    LIN$ = MID$ (NUM$ (I), 7, 4)
    PRINT NPA$; "-"; NXX$; "-"; LIN$;
    NEXTNPA$ = MID$ (NUM$ (I + 1), 1, 3)
    NEXTNXX$ = MID$ (NUM$ (I + 1), 4, 3)
    IF NPA$ <> NEXTNPA$ THEN
            PRINT " TOTAL FOR NPA OF "; NPA$; " = "; TOTAL
            PRINT : TOTAL = 1
        ELSE
            TOTAL = TOTAL + 1
            IF NXX$ <> NEXTNXX$ THEN PRINT
        END IF
        PRINT
NEXT I
```

```
'2.6
' This program will calculate product bought minus coupons.
'
WHILE PROD$(I) <> "9"
    I = I + I
    INPUT "Enter product:"; PROD$(I)
    IF PROD$(I) <> "9" THEN INPUT "Enter price:"; PRIC(I)
WEND
NUMPROD = I - 1
PRINT
DO UNTIL COUP$(J) = "9"
    J = J + 1
    INPUT "Enter coupon:"; COUP$(J)
    IF COUP$(J) <> "9" THEN INPUT "Enter discount:"; DISC(J)
LOOP
NUMCOUP = J - 1
FOR I = 1 TO NUMPROD
    MAXDISC = 0
    FOR J = 1 TO NUMCOUP
        IF PROD$(I) = COUP$(J) AND DISC(J) > MAXDISC THEN
            MAXDISC = DISC(J): IND = J
        END IF
    NEXT J
    TOTAL = TOTAL + PRIC(I) - MAXDISC
    COUP$(IND) = "*"
NEXT I
PRINT : PRINT "TOTAL = $";
IF TOTAL < 10 THEN PRINT USING "#.##"; TOTAL
IF TOTAL >= 10 THEN PRINT USING "##.##"; TOTAL
```

```
'2.7
' This program will display dates in other formats.
INPUT "Enter format:"; format$
INPUT "Enter date:"; DAT$
SELECT CASE format$
        CASE "ISO"
            YYYY$ = MID$(DAT$, 1, 4)
            MM$ = MID$ (DAT$, 6, 2)
            DD$ = MID$(DAT$, 9, 2)
        CASE "AMERICAN"
            MM$ = MID$ (DAT$, 1, 2)
            DD$ = MID$ (DAT$, 4, 2)
            YYYY$ = MID$(DAT$, 7, 4)
        CASE "EUROPEAN"
            DD$ = MID$ (DAT$, 1, 2)
            MM$ = MID$(DAT$, 4, 2)
            YYYY$ = MID$(DAT$, 7, 4)
END SELECT
IF format$ <> "ISO" THEN
    PRINT "ISO = "; YYYY$; "-"; MM$; "-"; DD$
END IF
IF format$ <> "AMERICAN" THEN
    PRINT "AMERICAN = "; MM$; "-"; DD$; "-"; YYYY$
END IF
IF format$ <> "EUROPEAN" THEN
    PRINT "EUROPEAN = "; DD$; " - "; MM$; " - "; YYYY$
END IF
'2.8
' This program will reverse the words in 1 or 2 sentences.
INPUT "Enter sentence:"; SENT$
NUM = 1: WORD$ (NUM) = "": I = 1
WHILE I <= LEN(SENT$)
        CH$ = MID$ (SENT$, I, 1)
        IF CH$ = "." THEN
            FOR J = NUM TO 1 STEP -1
                IF J < NUM THEN PRINT " ";
                    PRINT WORD$(J);
            NEXT J
            PRINT ". ";
            NUM = 0: I = I + I
        ELSE ' -- NOT A PERIOD
            IF CH$ <> " " THEN
            WORD$ (NUM) = WORD$ (NUM) + CH$
            ELSE
                NUM = NUM + 1: WORD$(NUM) = ""
            END IF
        END IF
        I = I + I
WEND
```

```
'2.9
' This program will print 4 smallest #s in a 4 x 4 matrix.
'
DIM B(16)
FOR I = 1 TO 4
    PRINT USING "Enter row #:"; I;
    INPUT A(I, 1), A(I, 2), A(I, 3), A(I, 4)
NEXT I
FOR I = 1 TO 4
    FOR J = 1 TO 4
                B((I - I) * 4 + J) = A(I, J)
        NEXT J
NEXT I
'
FOR I = 1 TO 15
    FOR J = I + 1 TO 16
        IF B(I) > B(J) THEN SWAP B(I), B(J)
    NEXT J
NEXT I
'
K=1: B (0) = -99
WHILE (NUM < 4) OR (B (K) = B(K - 1))
    ONEDISP = 0
    IF B (K) <> B (K - 1) THEN
        PRINT
        NUM = NUM + 1
        PRINT USING "#"; NUM;
        PRINT ". SMALLEST ="; B (K) ; "OCCURS AT ";
        FOR I = 1 TO 4
            FOR J = 1 TO 4
                IF B (K) = A(I, J) THEN
                    IF ONEDISP THEN PRINT ", "; ELSE ONEDISP = 1
                    PRINT USING "(#"; I; : PRINT USING ",#"; J;
                    PRINT ")";
                    END IF
            NEXT J
        NEXT I
    END IF
    K = K + I
WEND
```

```
'2.10
' This program will print # of days between two dates.
'
DATA 31,28,31,30,31,30,31,31,30,31,30,31
DIM MONTH(12): FOR I = 1 TO 12: READ MONTH(I): NEXT I
INPUT "Enter month:"; M
INPUT "Enter day:"; D
INPUT "Enter year:"; Y
' October 25, 1967
FOR I = 1 TO 9
        DAYS2 = DAYS2 + MONTH(I)
NEXT I
DAYS2 = DAYS2 + 25
'
FOR I = 1967 TO Y - 1
    DAYS = DAYS + 365
    IF I MOD 4 = 0 THEN DAYS = DAYS + 1
NEXT I
IF (Y MOD 4 = 0) AND (M > 2) THEN DAYS = DAYS + 1
FOR I = 1 TO M - 1
    DAYS = DAYS + MONTH(I)
NEXT I
DAYS = DAYS + D
PRINT DAYS - DAYS2; "DAYS"
```

'3.1
' This program displays GTEDS squares relative to cursor.
' Cursor can be moved up, left, down, right: I, J, K, M.
CLS
$\mathrm{R}=5: \quad \mathrm{C}=5: \mathrm{K} \$=" \mathrm{"}$
WHILE K\$ < "1" OR K\$ > "4"
LOCATE R, C: PRINT "\#": K\$ = ""
WHILE K\$ = "": K\$ = INKEY\$: WEND
IF K\$ >= "I" AND K\$ <= "M" THEN
LOCATE R, C: PRINT " "
IF K\$ = "I" THEN R = R - 1
IF K\$ = "M" THEN R = $\mathrm{R}+1$
IF K\$ = "J" THEN C = C - 1
IF K\$ = "K" THEN C = C + 1
END IF
WEND
X = ASC(K\$) - ASC("0")
IF $\mathrm{X}=1$ THEN $\mathrm{A}=1: \mathrm{B}=0$
IF $X=2$ THEN $A=1: B=-1$
IF $X=3$ THEN $A=-1: B=-1$
IF $X=4$ THEN $A=-1: B=0$
IF ($\mathrm{R}+5$ * $\mathrm{A}>24$) OR ($\mathrm{R}+5$ * A < 1) THEN
PRINT "OFF THE SCREEN": END
ELSE
IF ($\mathrm{C}+9$ * $\mathrm{B}+9$ > 80) OR ($\mathrm{C}+9$ * $\mathrm{B}<1$) THEN PRINT "OFF THE SCREEN": END

ELSE

LOCATE R + 1 * A, C + 8 * B: PRINT "G T E D S"
LOCATE R + 2 * A, C + 8 * B: PRINT "T D"
LOCATE R + 3 * A, C + 8 * B: PRINT "E "; X; " E"
LOCATE R + 4 * A, C + 8 * B: PRINT "D T" LOCATE R + 5 * A, C + 8 * B: PRINT "S D E T G" END IF
END IF

```
13.2
' This program will solve an equation with +,-,*, or /.
'
INPUT "Enter value:"; V1$
INPUT "Enter symbol:"; S1$
INPUT "Enter value:"; V2$
INPUT "Enter symbol:"; S2$
INPUT "Enter value:"; V3$
IF S1$ = "=" THEN
    S1$ = S2$: S2$ = "="
    X$= V1$: V1$ = V2$: V2$ = V3$: V3$ = X$
END IF
' Equation is now of the form V1 [op] V2 = V3
N1 = VAL(V1$)
N2 = VAL(V2$)
N3 = VAL(V3$)
PRINT "X =";
SELECT CASE S1$
        CASE "+"
            IF V1$ = "X" THEN PRINT N3 - N2
            IF V2$ = "X" THEN PRINT N3 - N1
            IF V3$ = "X" THEN PRINT N1 + N2
        CASE "-"
            IF V1$ = "X" THEN PRINT N3 + N2
            IF V2$ = "X" THEN PRINT N1 - N3
            IF V3$ = "X" THEN PRINT N1 - N2
        CASE "*"
        IF V1$ = "X" THEN PRINT N3 / N2
        IF V2$ = "X" THEN PRINT N3 / N1
        IF V3$ = "X" THEN PRINT N1 * N2
        CASE "/"
            IF V1$ = "X" THEN PRINT N3 * N2
            IF V2$ = "X" THEN PRINT N1 / N3
            IF V3$ = "X" THEN PRINT N1 / N2
END SELECT
```

```
'3.3
' This program prints combinations of digits summing to #.
INPUT "Enter digits:"; DIGITS$
INPUT "Enter sum:"; SUM
NEWSUM = INT(SUM / 10) * 8 + (SUM MOD 10)
LAST = LEN(DIGITS$)
FOR I = 1 TO LAST
    DIGIT(I) = VAL(MID$(DIGITS$, I, I))
NEXT I
'
POWER = 1
FOR I = 1 TO LAST: POWER = POWER * 2: NEXT I
POWER = POWER - 1
'
FOR I = 1 TO POWER
    J = 1
    WHILE (A(J) = 1)
        A(J) = 0: J = J + 1
    WEND
    A(J) = 1
    TOTAL = 0
    FOR J = 1 TO LAST
        IF A(J) = 1 THEN TOTAL = TOTAL + DIGIT(J)
    NEXT J
    ONEPRINT = 0
    IF TOTAL = NEWSUM THEN
        FOR J = 1 TO LAST
            IF A(J) = 1 THEN
                    IF ONEPRINT THEN PRINT "+"; ELSE ONEPRINT = 1
                    PRINT USING "#"; DIGIT(J);
                END IF
        NEXT J
        PRINT " ="; SUM
    END IF
NEXT I
'3.4
' This program will decompose a large integer into primes.
'
DIM A(80), Q(80)
INPUT "Enter number:"; LONGNUM$
L = LEN (LONGNUM$)
FOR I = 1 TO L
    A(I) = VAL(MID$(LONGNUM$, I, 1))
NEXT I
PRIME = 2: POWER = 0
FIRSTFACTOR = 1: QUOTIENTISO = 0
WHILE NOT QUOTIENTISO
' Check if LongNum (Array A) is divisble by Prime
    NUM = 0
    FOR I = 1 TO L
        NUM = NUM * 10 + A(I)
        Q(I) = INT(NUM / PRIME)
```

```
        NUM = NUM - Q(I) * PRIME
    NEXT I
    IF NUM = 0 THEN
            Prime divided LongNum
    I = I
    WHILE (Q (I) = 0) AND (I <= L): I = I + I: WEND
    QUOTIENTISO = (I = L) AND (Q (L) = I)
    L = L - I + I
        Copy Quotient into array A to be divided again
        FOR J = 1 TO L
            A(J) = Q(J + I - I)
        NEXT J
        POWER = POWER + 1
        ELSE
            Prime did not divide LongNum
        IF POWER >= }1\mathrm{ THEN GOSUB DisplayFactor
        GOSUB GetNextPrime
        END IF
WEND
GOSUB DisplayFactor: END
' Display Factor
DisplayFactor:
    IF FIRSTFACTOR THEN FIRSTFACTOR = 0 ELSE PRINT " * ";
    PRINT MID$ (STR$ (PRIME), 2);
    IF POWER > 1 THEN PRINT "^"; MID$ (STR$ (POWER), 2);
    POWER = 0
    RETURN
' Get next prime
GetNextPrime:
    IF PRIME = 2 THEN PRIME = 3: RETURN
    ISPRIME = 0
    WHILE ISPRIME = 0
        PRIME = PRIME + 2
        ISPRIME = 1
        FOR J = 3 TO INT(SQR(PRIME))
        IF PRIME MOD J = 0 THEN ISPRIME = 0
    NEXT J
    WEND
    RETURN
```

13.5
' This program will find words in a 12 x 11 array of letters.
DIM A\$ (12) , B\$ (12)
A\$ (1) = "DATAADFBAAM": A\$ (2) = "JARBJCEDFOI"
A\$ $(3)=$ "REAEEXEVDBC": A\$ $(4)=$ "JESUSDEERNR"
A\$ $(5)=$ "FABUUNMIEMO": A\$ $(6)=$ "LLMNSOIPTKC"
A\$ (7) = "POQRSITRUOH": A\$ (8) = "ABUVKWSXPPI"
A\$ $(9)=$ "SOYZCPULMLP": A\$ (10) = "CCISABCDOAM"
A\$ (11) = "AEFGRHIJCRM": A\$ (12) = "LKLETTEKSID"
' String together the columns instead of rows
FOR I = 1 TO 11
$B \$(I)=" "$
FOR J = 1 TO 12

```
    B$(I) = B$(I) + MID$ (A$ (J), I, I)
    NEXT J
NEXT I
INPUT "Enter word:"; WORD$(1)
L = LEN(WORD$ (1))
' Reverse word
WORD$(2) = ""
FOR I = 1 TO L
    WORD$ (2) = WORD$ (2) + MID$(WORD$ (1), L - I + 1, 1)
NEXT I
    Find words horizontally, (frontwards and backwards)
J = 0
WHILE (COL = 0) AND (J < 2)
    J = J + 1: ROW = 0
    WHILE (ROW < 12) AND (COL = 0)
        ROW = ROW + 1
        COL = INSTR(1, A$ (ROW), WORD$ (J))
    WEND
WEND
IF COL = 0 THEN
    ROW = 0: J = 0
ELSE
    IF J = 1 THEN C1 = COL: C2 = COL + L - 1
    IF J = 2 THEN C1 = COL + L - 1: C2 = COL
    R1 = ROW: R2 = ROW
    GOTO DisplayCoordinates
END IF
' Find words vertically, (frontwards and backwards)
WHILE (ROW = 0) AND (J < 2)
    J = J + 1: COL = 0
    WHILE (COL < 11) AND (ROW = 0)
        COL = COL + 1
        ROW = INSTR(1, B$ (COL), WORD$ (J))
    WEND
WEND
IF ROW = 0 THEN END
IF J = 1 THEN R1 = ROW: R2 = ROW + L - 1
IF J = 2 THEN R1 = ROW + L - 1: R2 = ROW
C1 = COL: C2 = COL
'
' Display coordinates
DisplayCoordinates:
    PRINT USING "FIRST LETTER: (##"; R1;
    PRINT USING ", ##"; C1; : PRINT ")"
    PRINT USING "LAST LETTER: (##"; R2;
    PRINT USING ", ##"; C2; : PRINT ")"
```

```
'3.6
' This program will solve two inequality equations.
INPUT "Enter equation 1:"; EQ1$
INPUT "Enter logical op:"; OP$
INPUT "Enter equation 2:"; EQ2$
S1$ = MID$(EQ1$, 2, 1)
S2$ = MID$(EQ2$, 2, 1)
N1 = VAL(MID$ (EQ1$, 3, 1))
N2 = VAL(MID$(EQ2$, 3, 1))
NOS1 = (S1$ = "<" AND S2$ = ">" AND OP$ = "AND" AND N1 <= N2)
NOS2 = (S1$ = ">" AND S2$ = "<" AND OP$ = "AND" AND N1 >= N2)
IF NOS1 OR NOS2 THEN PRINT "NO SOLUTION": END
ALL1 = (S1$ = "<" AND S2$ = ">" AND OP$ = "OR" AND N1 > N2)
ALL2 = (S1$ = ">" AND S2$ = "<" AND OP$ = "OR" AND N1 < N2)
IF ALL1 OR ALL2 THEN PRINT "ALL INTEGERS": END
IF N < N2 THEN MIN = N1: MAX = N2 ELSE MIN = N2: MAX = N1
' Check for finite solution, and if less than 6 integers
FIN1 = (S1$ = "<" AND S2$ = ">" AND OP$ = "AND" AND N1 > N2)
FIN2 = (S1$ = ">" AND S2$ = "<" AND OP$ = "AND" AND N1 < N2)
IF (FIN1 OR FIN2) THEN
    IF MAX - MIN > 7 THEN
            A = MIN + 1: B = MIN + 3: GOSUB DisplayNumbers
            PRINT "...";
            A = MAX - 3: B = MAX - 1: GOSUB DisplayNumbers: END
    END IF
    A = MIN + 1: B = MAX - 1: GOSUB DisplayNumbers: END
END IF
' Check for infinite # of negative solutions
IF (S1$ = "<" AND S2$ = "<" AND OP$ = "AND") THEN
    PRINT "...";
    A = MIN - 3: B = MIN - 1: GOSUB DisplayNumbers: END
END IF
    Check for infinite # of positive solutions
IF (S1$ = ">" AND S2$ = ">" AND OP$ = "AND") THEN
    A = MAX + 1: B = MAX + 3
    PRINT "...": END
END IF
' Check for infinite # of positive and negative solutions
IN1 = (S1$ = ">" AND S2$ = "<" AND OP$ = "OR" AND N1 > N2)
IN2 = (S1$ = "<" AND S2$ = ">" AND OP$ = "OR" AND N1 < N2)
IF (IN1 OR IN2) THEN
    PRINT "...";
    A = MIN - 3: B = MIN - 1: GOSUB DisplayNumbers
    PRINT " ";
    A = MAX + 1: B = MAX + 3: GOSUB DisplayNumbers
    PRINT "...";
END IF
END
' Display numbers
DisplayNumbers:
    IF A < O THEN PRINT LEFT$(STR$(A), 2);
    IF A >= 0 THEN PRINT USING "#"; A;
    FOR I = A + 1 TO B
        PRINT ",";
```

```
        IF I < 0 THEN PRINT LEFT$ (STR$ (I), 2);
        IF I >= 0 THEN PRINT USING "#"; I;
    NEXT I
    RETURN
```

```
'3.7
' This program will print the sum and product of 2 matrices.
I
BASE$ = "0123456789ABCDEF"
FOR I = 1 TO 2
    FOR J = 1 TO 3
        FOR K = 1 TO 3
            PRINT USING "Enter Mat#"; I; : PRINT " (";
            PRINT USING "#"; J; : PRINT ","; : PRINT USING "#"; K;
                    INPUT ")"; NUM$
                    L = LEN (NUM$) : TENS = 0
                IF L = 2 THEN
                    TENS = (INSTR(1, BASE$, MID$(NUM$, 1, 1)) - 1) * 16
                    END IF
                    ONES = INSTR(1, BASE$, MID$(NUM$, L, 1)) - 1
                    MAT(I, J, K) = TENS + ONES
        NEXT K
        NEXT J
NEXT I
' Compute sum
PRINT "SUM =";
FOR I = 1 TO 3
    FOR J = 1 TO 3
        SUM = MAT(1, I, J) + MAT (2, I, J)
        PRINT SPACE$ (6 - LEN (HEX$ (SUM)) ) ; HEX$ (SUM) ;
    NEXT J
    PRINT
    IF I < 3 THEN PRINT SPACE$(5);
NEXT I
PRINT
' Compute product
PRINT "PRODUCT =";
FOR I = 1 TO 3
    FOR J = 1 TO 3
        PROD = 0
        FOR K = 1 TO 3
            PROD = PROD + MAT(1, I, K) * MAT(2, K, J)
        NEXT K
        PRINT SPACE$ (6 - LEN (HEX$ (PROD))) ; HEX$ (PROD) ;
    NEXT J
    PRINT
    IF I < 3 THEN PRINT SPACE$(9);
NEXT I
```

```
13.8
',This program will find three 3-digit primes.
DEFINT A-Z
DIM P(200)
NUM = 101: PNUM = 0
WHILE NUM < }99
    SQ = INT (SQR (NUM)) : I = 3
    WHILE (I <= SQ) AND (NUM MOD I > 0): I = I + 1: WEND
    IF I > SQ THEN
            N2 = NUM
            D1 = INT(N2 / 100)
            N2 = N2 - D1 * 100
            D2 = INT (N2 / 10)
            D3 = N2 - D2 * 10
            IF NOT (D1 = O OR D2 = 0 OR D3 = 0) THEN
                IF NOT (D1 = D2 OR D2 = D3 OR D1 = D3) THEN
                PNUM = PNUM + 1: P(PNUM) = NUM
                END IF
            END IF
    END IF
    NUM = NUM + 2
WEND
FOR I = 1 TO PNUM - 2
    FOR J = I + 1 TO PNUM - 1
        FOR K = J + 1 TO PNUM
                TOT = P(I) + P(J) + P(K)
                IF TOT > 1234 THEN
                    P1$ = MID$(STR$ (P (I)), 2)
                    P2$ = MID$(STR$ (P (J)), 2)
                    P3$= MID$(STR$ (P (K)), 2)
                    PCAT$ = P1$ + P2$ + P3$
                        FOR L = 1 TO 9: A(L) = 0: NEXT L: L = 0
                        WHILE (L < 9) AND (A (X) < 2)
                        L = L + 1
                        X = VAL (MID$ (PCAT$, L, 1))
                        A(X) = A(X) + 1
                        WEND
                    IF A(X) < 2 THEN
                        SUM$ = MID$(STR$ (TOT), 2)
                        D1 = (MID$ (SUM$, 1, 1) < MID$ (SUM$, 2, 1))
                        D2 = (MID$ (SUM$, 2, 1) < MID$ (SUM$, 3, 1))
                        D3 = (MID$ (SUM$, 3, 1) < MID$ (SUM$, 4, 1))
                        IF D1 AND D2 AND D3 THEN
                    PRINT P(I); "+"; P(J); "+"; P(K); "="; TOT
                        DISP = DISP + 1: IF DISP = 7 THEN END
                        END IF
                    END IF
                END IF
        NEXT K
        NEXT J
NEXT I
```

```
13.9
' This program will produce a binary search tree.
DIM AS (8, 256)
DATA 0,15,7,3,1,0,0,0,0,0
FOR I = 0 TO 8: READ COLINC(I) : NEXT I
CLS : INPUT "Enter word(s) :"; WORDS$
CLS
FOR I = 1 TO LEN(WORDS$)
    CH$ = MID$(WORDS$, I, 1)
    IF CH$ <> " " THEN
            R = 0: C = 1: COL = 40
' Traverse tree until an empty node exists
            WHILE A$ (R, C) <> ""
                IF CH$ <= A$ (R, C) THEN
                C = 2 * C - 1: COL = COL - COLINC(R + 1) - 1
                    ELSE
                        C = 2 * C
                PREVCOL = COL
                COL = COL + COLINC (R + I) + I
            END IF
            R = R + 1
        WEND
        A$ (R, C) = CH$
        LOCATE R + 1, COL
        IF R = O THEN
            PRINT CH$;
        ELSE
            IF C MOD 2 = 1 THEN
                    PRINT CH$; STRING$(COLINC(R), " - ") ; "+";
                ELSE
                    LOCATE R + 1, PREVCOL
                    PRINT "+"; STRING$(COLINC(R), " - ") ; CH$;
            END IF
        END IF
    END IF
NEXT I
```

```
'3.10
' This program will determine the values F(X) converges.
DIM F#(5000)
FOR I = 1 TO 2
    IF I = 1 THEN INC# = . 01 ELSE INC# = .1
    DIVERGE = 0: FACTOR# = 1: FOUND = 0
    WHILE (K# < 10) AND NOT FOUND
        K# = K# + INC# / FACTOR#
        X = 1: F# (X) = K#
        IF FACTOR# < 20 THEN ITER = 250 * FACTOR# ELSE ITER = 5000
        WHILE (X < ITER) AND NOT DIVERGE
            X = X + I
            F#(X) = EXP(LOG(K#) * F# (X - 1))
            DIVERGE = (F#(X) > 9.9)
        WEND
        IF I = 1 THEN
            FX2# = FX1#: FX1# = FX0#: FX0# = F# (X)
            IF (FX2# > FX1#) AND (FX1# < FX0#) THEN
                K# = K# - 2 * INC# / FACTOR#
                IF (FX2# - FX1#) < .0005 THEN FOUND = -1: FX# = FX1#
                FX0# = FX2#: FX1# = FX0#
                    FACTOR# = FACTOR# * 2
            END IF
        ELSE
            Find Maximum point
            IF DIVERGE THEN
                DIVERGE = 0
                K# = K# - INC# / FACTOR#
                    IF INC# / FACTOR# < . 000005 THEN FOUND = -1
                    FACTOR# = FACTOR# * 2
            ELSE
                    FX# = F#(X)
            END IF
        END IF
    WEND
    IF I = 1 THEN PRINT "MINIMUM"; ELSE PRINT "MAXIMUM";
    PRINT " VALUE: ";
    IF I = 1 THEN
            PRINT USING "F(X) = #.###"; FX#; : PRINT " OCCURS WHEN ";
            PRINT USING "K = #.###"; K# + INC# / FACTOR#
    ELSE
            PRINT USING "F(X) = #.#"; FX#; : PRINT " OCCURS WHEN ";
            PRINT USING "K = #.#####"; K# + INC# / FACTOR#
    END IF
NEXT I
```


FLORIDA HIGH SCHOOLS COMPUTING COMPETITION 194 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program will display the 1994 FHSCC sponsors.
'
PRINT "FHSCC '94 IS SPONSORED BY:": PRINT
FOR I = 1 TO 4
    PRINT "GTEDS GTEDS GTEDS GTEDS GTEDS"
NEXT I
PRINT
FOR I = 1 TO 4
    PRINT "USF CENTER FOR EXCELLENCE"
NEXT I
PRINT
FOR I = 1 TO 4
    PRINT "FLORIDA DEPARTMENT OF EDUCATION"
NEXT I
```

'1.2
' This program will determine if an applicant is hired.
INPUT "Entrance requirement:"; ENT\$
INPUT "Plans to accept or reject offer:"; OFFER\$
PRINT "APPLICANT WILL ";
IF ENT\$ <> "PASSED" OR OFFER\$ <> "ACCEPT" THEN PRINT "NOT ";
PRINT "BE HIRED"
'1.3
' This program will display number of employees.
1
INPUT "Enter current number:"; CURRENT
INPUT "Enter number hiring:"; HIRING
INPUT "Enter number leaving:"; LEAVING
PRINT CURRENT + HIRING - LEAVING; "EMPLOYEES"
'1.4
' This program will total the millions converted.
INPUT "Enter number of accounts: "; NUM\$
WHILE VAL (NUM\$) > -999
SUM $=$ SUM + VAL (NUM\$)
INPUT "Enter number of accounts:"; NUM\$
WEND
IF SUM $=$ INT (SUM) THEN
PRINT SUM;
ELSE
PRINT USING "\#.\# "; SUM;
END IF
PRINT "MILLION ACCOUNTS CONVERTED TO CBSS"

```
'1.5
' This program will compute the gross wages earned.
INPUT "Enter hours, rate:"; HOURS, RATE
IF HOURS > 40 THEN HOURS = HOURS + (HOURS - 40) * . 5
PRINT USING "GROSS WAGES ARE $###.##"; HOURS * RATE
'1.6
' This program will tally the number of accounts sold.
DATA 706,95000, 208,54321, 912,99825, 605,88776, 404,90175
FOR I = 1 TO 5: READ AREAC(I), ACCT(I): NEXT I
INPUT "Enter number of area codes:"; NUM
FOR I = 1 TO NUM
    INPUT "Enter area code:"; ACODE
    FOR J = 1 TO 5
        IF AREAC(J) = ACODE THEN SUM = SUM + ACCT (J)
    NEXT J
NEXT I
PRINT "TOTAL NUMBER OF ACCOUNTS BEING SOLD ="; SUM
'1.7
' This program will display the cost to fix error in phase.
'
DATA REQUIREMENTS,DESIGN,CODING,SYSTEM TEST,ACCEPTANCE TEST
DATA MAINTENANCE
DATA 1, 5, 10, 20, 50, 100
FOR I = 1 TO 6: READ PHASES$(I): NEXT I
FOR I = 1 TO 6: READ FACTOR(I): NEXT I
INPUT "Enter cost $:"; COST
INPUT "Enter phase:"; PH$
I = 1
WHILE PH$ <> PHASES$(I): I = I + 1: WEND
C$ = LTRIM$(STR$(COST * FACTOR(I)))
PRINT "COST IS $"; C$;
PRINT " TO FIX PROBLEM IN "; PHASES$(I); " PHASE"
'1.8
', This program will compute the maximum blocksize.
INPUT "Enter logical record length: "; LRECL
NUM = INT(23476 / LRECL)
PRINT "BLOCKSIZE ="; LRECL * NUM; "BYTES"
```

'1.9
' This program will compute an electric bill.
1
INPUT "Enter kilowatt hours:"; HOURS
IF HOURS <10 THEN RATE $=4.95$ ELSE RATE $=5.65$
BILL = RATE * HOURS
BILL $=$ BILL * $(1+.03+.06)$
IF HOURS > 30 THEN BILL = BILL + 25
PRINT "THE CUSTOMER'S BILL IS \$";
IF BILL < 100 THEN PRINT USING "\#\#.\#\#"; BILL: END PRINT USING "\#\#\#.\#\#"; BILL
'1.10
' This program will determine if a 5×5 matrix is symmetric '
DEFINT A-Z
FOR I = 1 TO 5
PRINT "Enter row:";
INPUT A(I, 1), A(I, 2), A(I, 3), A(I, 4), A(I, 5)
NEXT I
SYM $=-1$
FOR I = 1 TO 5
FOR J = 1 TO 5
IF A(I, J) <> A(J, I) THEN SYM = 0
NEXT J
NEXT I
PRINT "MATRIX IS ";
IF NOT SYM THEN PRINT "NOT ";
PRINT "SYMMETRIC"

```
'2.1
' This program will simulate NTF's ESP utility.
'
DIM JOB$ (20)
INPUT "Enter jobs/CK:"; JOBS$
L = INT((LEN (JOBS$) + 1) / 3)
FOR I = 1 TO L
    JOB$(I) = MID$(JOBS$, I * 3 - 2, 2)
NEXT I
I = 0: LASTCK = 0
WHILE I < L
    I = LASTCK + I
    WHILE JOB$(I) <> "CK"
        PRINT JOB$(I)
        I = I + I
    WEND
    PRINT "EVERYTHING OK?": INPUT OK$
    IF OK$ = "N" THEN I = LASTCK ELSE LASTCK = I
WEND
```

```
'2.2
```

'2.2
' This program will display random letters in random areas.
' This program will display random letters in random areas.
'
'
RANDOMIZE TIMER
RANDOMIZE TIMER
CH\$ = " ": LASTLET\$ = " "
CH\$ = " ": LASTLET\$ = " "
WHILE CH\$ = " " OR (CH\$ >= "A" AND CH\$ <= "Z")
WHILE CH\$ = " " OR (CH\$ >= "A" AND CH\$ <= "Z")
CLS
CLS
IF CH\$ <> " " THEN
IF CH\$ <> " " THEN
LETTER\$ = CH\$
LETTER\$ = CH\$
ELSE
ELSE
LETTER\$ = CHR\$ (65 + INT(RND (3) * 26)): CH\$ = LETTER\$
LETTER\$ = CHR\$ (65 + INT(RND (3) * 26)): CH\$ = LETTER\$
END IF
END IF
LASTLET\$ = LETTER\$
LASTLET\$ = LETTER\$
WHILE CH\$ = LASTLET\$
WHILE CH\$ = LASTLET\$
R = INT(RND (3) * 23) + 1: C = INT(RND (3) * 79) + 1
R = INT(RND (3) * 23) + 1: C = INT(RND (3) * 79) + 1
LOCATE R, C: PRINT LETTER$;
 LOCATE R, C: PRINT LETTER$;
FOR I = 1 TO 500: NEXT I
FOR I = 1 TO 500: NEXT I
A\$ = INKEY$: IF A$ <> "" THEN LETTER\$ = A$: CH$ = A\$
A\$ = INKEY$: IF A$ <> "" THEN LETTER\$ = A$: CH$ = A\$
WEND
WEND
WEND

```
WEND
```

```
'2. 3
' This program will transliterate Hebrew to English.
INPUT "Enter letters:"; ST$
LASTCH$ = " "
FOR I = 1 TO LEN(ST$)
    CH$ = MID$ (ST$, I, I): LET$ = CH$
    IF LASTCH$ = " " THEN
            IF CH$ = "A" THEN
                MD$ = MID$(ST$, I + 1, 1)
                IF MD$ = "L" THEN LET$ = ") " ELSE LET$ = "("
            END IF
            IF MID$(ST$, I, 3) = "HET" THEN LET$ = "CH"
            IF MID$(ST$, I, 2) = "TS" THEN LET$ = "TS"
            TRANS$ = LET$ + TRANS$
    END IF
    LASTCH$ = CH$
NEXT I
PRINT TRANS$
'2.4
' This program will append a "security digit" to an account.
INPUT "Enter account number:"; ACCT$
L = LEN (ACCT$)
IF L <> 7 AND L <> 9 THEN
    PRINT "ERROR - INCORRECT LENGTH": ER = - 1
END IF
' Sum the valid digits
FOR I = 1 TO L
    CH$ = MID$ (ACCT$, I, 1)
    DIG = ASC(CH$) - ASC("0")
    IF DIG < O OR DIG > 9 THEN
            PRINT "ERROR - NUM-NUMERIC": END
    END IF
    SUM = SUM + DIG
NEXT I
' If account is valid, append security digit
IF ER THEN END
PRINT ACCT$;
IF SUM MOD 2 = 0 THEN PRINT "1"; ELSE PRINT "0"
```

```
'2.5
' This program will count the digits used in a book.
I
DEFINT A-Z
INPUT "Enter last page:"; LPAGE
INPUT "Enter M:"; M
FOR I = 2 TO LPAGE
    IF I MOD M > O THEN
            PAGE$ = MID$(STR$ (I) , 2)
            FOR J = 1 TO LEN(PAGE$)
                DIG = VAL (MID$ (PAGE$, J, I))
                A(DIG) = A(DIG) + 1
            NEXT J
        END IF
NEXT I
MIN = 32000
FOR I = 0 TO 9
        PRINT I; "APPEARS"; A(I) ; "TIMES"
        IF A(I) > MAX THEN MAX = A(I)
        IF A(I) < MIN THEN MIN = A(I)
NEXT I
PRINT
PRINT "DIGIT(S) APPEARING THE MOST:";
FOR I = 0 TO 9
    IF A(I) = MAX THEN PRINT USING "##"; I;
NEXT I: PRINT
PRINT "DIGIT(S) APPEARING THE LEAST:";
FOR I = 0 TO 9
    IF A(I) = MIN THEN PRINT USING "##"; I;
NEXT I
```

```
'2. 6
' This program will compute the roots for a quadratic.
'
DEFINT A-Z
INPUT "Enter coefficients A, B, C:"; A, B, C
\(D=B * B-4 * A * C\)
PRINT "THE ROOTS ARE ";
IF D >= 0 THEN
    PRINT "REAL"
    R1 \(=(-B+\operatorname{INT}(S Q R(D))) /(2 * A)\)
    \(R 2=(-B-\operatorname{INT}(S Q R(D))) /(2 * A)\)
    GOSUB RemoveSpace
    IF D > 0 THEN
        PRINT "THE ROOTS ARE "; R1\$; " AND "; R2\$: END
    ELSE
        PRINT "THE ONLY ROOT IS "; R1\$: END
    END IF
END IF
' \(\mathrm{D}<0\) Roots are Complex
PRINT "COMPLEX"
R1 \(=-\mathrm{B} /(2\) * A)
\(\mathrm{R} 2=\operatorname{INT}(\operatorname{SQR}(-\mathrm{D})) /(2 * A)\)
GOSUB RemoveSpace
PRINT "THE ROOTS ARE "; R1\$; " + "; R2\$; "I AND ";
PRINT R1\$; " - "; R2\$; "I"
END
' Subroutine to remove leading space, not negative sign
RemoveSpace:
    R1\$ = LTRIM\$ (STR\$ (R1)) : R2\$ = LTRIM\$ (STR\$ (R2) )
    RETURN
```

```
'2.7
' This program will generate 5 customer account numbers.
DEFINT A-Z
DEFDBL S
INPUT "Enter seed used last:"; S
WHILE I < 15
' -- Add 1 and reverse last 2 digits
    S = S + 1
    CUST$ = MID$(STR$ (S), 2): L = LEN (CUST$)
    IF L < 9 THEN CUST$ = STRING$(9 - L, "0") + CUST$
    LAST2$ = MID$(CUST$, 9, 1) + MID$(CUST$, 8, 1)
    CUST$ = LEFT$ (CUST$, 2) + LAST2$ + MID$(CUST$, 3, 5)
' -- Calculate check digit
    SUM = 0
    FOR J = 1 TO 9
        DIG = VAL (MID$ (CUST$, J, 1))
        SUM = SUM + DIG * (11 - J)
        NEXT J
        CDIG = 11 - (SUM MOD 11)
        IF CDIG = 11 THEN CDIG = 0
        IF CDIG < 10 THEN
            PRINT CUST$; : PRINT USING "#"; CDIG: I = I + 1
        END IF
WEND
'2. 8
' This program will compute speed, distance, and time.
INPUT "Enter speed, distance:"; S, D
INPUT "Enter time: "; TIM$
IF TIM$ <> "O" THEN
    L = LEN (TIM$)
    TTYPE$ = MID$(TIM$, L, 1)
    IF TTYPE$ <> "C" THEN
        T = VAL (MID$ (TIM$, 1, L - 1))
    ELSE
        HH = VAL(MID$(TIM$, 1, 2))
        MM = VAL (MID$ (TIM$, 4, 2))
        T = HH + MM / 60
    END IF
    IF TTYPE$ = "M" THEN T = T / 60
END IF
IF S = O THEN
    PRINT USING "SPEED = ###.#"; D / T; : PRINT " MPH"
ELSE
    IF D = O THEN
        PRINT USING "DISTANCE = ####.#"; S * T; : PRINT " MILES"
    ELSE ' TIM$ = "0"
        PRINT USING "TIME = #.##"; D / S; : PRINT " HOURS"
    END IF
END IF
```

```
'2.9
' This program will compute the response time.
I
INPUT "Enter reported date:"; RDATE$
INPUT "Enter reported time:"; RTIME$
INPUT "Enter cleared date:"; CDATE$
INPUT "Enter cleared time:"; CTIME$
RDAY = VAL(MID$ (RDATE$, 4, 2))
CDAY = VAL(MID$ (CDATE$, 4, 2))
RHOUR = VAL(MID$(RTIME$, 1, 2))
RMIN = VAL(MID$ (RTIME$, 4, 2))
CHOUR = VAL(MID$(CTIME$, 1, 2))
CMIN = VAL(MID$ (CTIME$, 4, 2))
IF RHOUR < 8 THEN RHOUR = 8: RMIN = 0
IF CHOUR < 8 THEN CHOUR = 8: CMIN = 0
IF CHOUR >= 17 THEN CHOUR = 17: CMIN = 0
IF RHOUR >= 17 THEN RHOUR = 17: RMIN = 0
RES = (CDAY - RDAY) * 9 * 60
RES = RES + (CHOUR - RHOUR) * 60 + (CMIN - RMIN)
PRINT "RESPONSE TIME WAS"; RES; "MINUTES"
```

```
'2.10
' This program will display the discounts for calling plans.
INPUT "Enter originating number:"; ORIGNUM$
INPUT "Enter number called:"; TONUM$
INPUT "Handicapped person?:"; HANDICAP$
INPUT "Enter length of call:"; CALLLEN
INPUT "Enter cost of call $:"; COST
ORIGAREA$ = LEFT$ (ORIGNUM$, 3)
TOAREA$ = LEFT$ (TONUM$, 3)
DIFFAREA = (ORIGAREA$ <> TOAREA$)
PLANA = 9999: PLANB = 9999: PLANC = 9999
IF (CALLLEN >= 5!) AND DIFFAREA THEN
    PLANA = COST * . 85
    PCOST = PLANA: P$ = "A": GOSUB DisplayPlan
END IF
IF HANDICAP$ = "YES" THEN
    PLANB = COST * . }
    PCOST = PLANB: P$ = "B": GOSUB DisplayPlan
END IF
IF (TOAREA$ = "407") AND DIFFAREA AND (CALLEN < 3.5) THEN
    PLANC = COST * . 8775
    PCOST = PLANC: P$ = "C": GOSUB DisplayPlan
END IF
IF P$ = "" THEN
    PRINT "THIS PERSON DOES NOT QUALIFY FOR ANY PLANS"
ELSE
    PRINT "THIS PERSON WOULD RECEIVE PLAN ";
    IF PLANA < PLANB AND PLANA < PLANC THEN PRINT "A": END
    IF PLANB < PLANA AND PLANB < PLANC THEN PRINT "B": END
    PRINT "C"
END IF
END
' Subroutine to display plan charges
DisplayPlan:
    PRINT "THE PLAN "; P$; " CHARGE WOULD BE $";
    IF PCOST < 10 THEN
        PRINT USING "#.##"; PCOST
    ELSE
        PRINT USING "##.##"; PCOST
        END IF
        RETURN
```

```
'3.1
' This program will convert transliterated English to Greek
DIM NAME$(24), VALUE(24)
DATA ALPHA, BETA, GAMMA, DELTA, EPSILON, ZETA, -TA, IOTA, KAPPA
DATA LAMBDA,MU,NU,XI,-MICRON,PI,RHO,SIGMA,TAU,UPSILON
DATA PHI,CHI,PSI,OMEGA,THETA
DATA 1,2,3,4,5,7,8,10,20,30,40,50,60,70,80
DATA 100,200,300,400,500,600,700,800,9
FOR I = 1 TO 24: READ NAME$(I): NEXT I
FOR I = 1 TO 24: READ VALUE(I): NEXT I
INPUT "Enter transliteration:"; TRANS$
I = 1
WHILE I <= LEN(TRANS$)
    CH$ = MID$(TRANS$, I, 2)
    DOUB = (CH$ = "TH") OR (CH$ = "PH")
    DOUB = DOUB OR (CH$ = "CH") OR (CH$ = "PS")
    IF DOUB THEN INC = 2 ELSE INC = 1
    J = 1
    WHILE MID$ (TRANS$, I, INC) <> MID$ (NAME$ (J), 1, INC)
        J = J + 1
    WEND
    PRINT NAME$(J); " ";
    SUM = SUM + VALUE(J)
    I = I + INC
WEND
PRINT : PRINT "NUMERICAL SUM ="; SUM
'3.2
' This program will move a taxi in a grid.
SOUTH = 8
INPUT "Enter starting position:"; SLET$, SNUM
NUM = SNUM
SNUMLET = ASC(SLET$) - ASC("A") + 1: NUMLET = SNUMLET
DO UNTIL DIR$ = "Q"
    INPUT "Enter direction:"; DIR$
    OCL = 0: TOOFAR = 0
    SELECT CASE DIR$
        CASE "N"
        IF NUM = 1 THEN
            OCL = -1
        ELSE
            IF SNUM - 2 = NUM THEN TOOFAR = -1 ELSE NUM = NUM - 1
        END IF
    CASE "S"
        IF NUM = SOUTH THEN
            OCL = -1
        ELSE
            IF SNUM + 2 = NUM THEN TOOFAR = -1 ELSE NUM = NUM + 1
        END IF
    CASE "W"
        IF NUMLET = 1 THEN
```

```
            OCL = -1
            ELSE
            IF SNUMLET - 2 = NUMLET THEN
                        TOOFAR = -1
            ELSE
                NUMLET = NUMLET - 1
            END IF
            END IF
        CASE "E"
            IF NUMLET = 26 THEN
            OCL = -1
            ELSE
                IF SNUMLET + 2 = NUMLET THEN
                TOOFAR = -1
                ELSE
                    NUMLET = NUMLET + 1
                END IF
            END IF
        END SELECT
' -- Display error or location
    IF OCL THEN
        PRINT "LOCATION IS OUTSIDE CITY LIMITS"
    ELSE
        IF TOOFAR THEN
            PRINT "LOCATION IS TOO FAR ";
            SELECT CASE DIR$
                    CASE "N": PRINT "NORTH"
                    CASE "S": PRINT "SOUTH"
                    CASE "W": PRINT "WEST"
                    CASE "E": PRINT "EAST"
            END SELECT
        ELSE
            IF DIR$ <> "Q" THEN
                PRINT "TAXI LOCATION IS ";
                PRINT CHR$(NUMLET + 64); ","; LTRIM$ (STR$ (NUM))
            END IF
        END IF
    END IF
LOOP
```

```
'3.3
' This program will display anagrams.
I
INPUT "Enter number of words:"; NUM
FOR I = 1 TO NUM
        INPUT "Enter word:"; W$(I)
NEXT I
' -- Sort words in ascending order
FOR I = 1 TO NUM - 1
        FOR J = I + I TO NUM
            IF W$(I) > W$(J) THEN SWAP W$(I), W$(J)
        NEXT J
NEXT I
' -- Sort letters within word and store in W2$()
FOR I = 1 TO NUM
        L = LEN (W$ (I))
        FOR J = 1 TO L
            SORTW$ (J) = MID$ (W$ (I) , J, I)
        NEXT J
        FOR J = 1 TO L - 1
            FOR K = J + 1 TO L
                IF SORTW$(J) > SORTW$(K) THEN SWAP SORTW$(J), SORTW$(K)
            NEXT K
    NEXT J
    FOR J = 1 TO L: W2$(I) = W2$(I) + SORTW$(J): NEXT J
NEXT I
' -- Compare every pair of sorted words for a match
FOR I = 1 TO NUM - 1
    FOR J = I + I TO NUM
        IF W2$(I) = W2$(J) THEN
            TOT = TOT + 1
            IF TOT = 1 THEN PRINT "ANAGRAMS: ";
                    IF TOT > 1 THEN PRINT " ";
                    PRINT W$(I) ; ", "; W$(J)
        END IF
    NEXT J
NEXT I
IF TOT = O THEN PRINT "NO ANAGRAMS IN LIST"
```

```
'3.4
' This program will place money in envelopes.
I
INPUT "Enter amount of money:"; MONEY
INC = INT(MONEY / 2)
FOR A = 1 TO INC - 2
    FOR B = A + 1 TO INC - 1
        FOR C = B + 1 TO INC
            { -- D will contain the largest amount to disperse }
            D = MONEY - A - B - C
            IF (A < B) AND (B < C) AND (C < D) THEN
                {-- (D - A) dollars are dispersed to make {
                PRINT "TAKE ";
                PRINT LTRIM$ (STR$(A)); " "; LTRIM$(STR$(B)); " ";
                PRINT LTRIM$(STR$(C)); " "; LTRIM$(STR$(D));
                PRINT " AND DISPERSE"; D - A; "DOLLARS TO MAKE ";
                PRINT LTRIM$(STR$(B)); " "; LTRIM$(STR$(C)); " ";
                PRINT LTRIM$(STR$(D)); " "; LTRIM$ (STR$(A))
                TOTAL = TOTAL + 1
            END IF
        NEXT C
    NEXT B
NEXT A
PRINT "TOTAL NUMBER OF SOLUTIONS ="; TOTAL
```

```
'3.5
' This program will convert Gregorian and Julian dates.
'
DIM MONTH(12)
DATA 31,28,31,30,31,30,31,31,30,31,30,31
FOR I = 1 TO 12: READ MONTH(I): NEXT I
INPUT "Enter Julian or Gregorian:"; DTYPE$
INPUT "Enter date:"; DTE$
IF DTYPE$ = "GREGORIAN" THEN
' Convert Gregorian to Julian
    M = VAL (LEFT$ (DTE$, 2))
    D = VAL (MID$ (DTE$, 4, 2))
    YY$ = MID$ (DTE$, 7, 2)
    Y = VAL(YY$)
    DAYS = D
    FOR I = 1 TO M - I: DAYS = DAYS + MONTH(I): NEXT I
    IF (Y MOD 4 = 0) AND (M > 2) THEN DAYS = DAYS + 1
    PRINT "JULIAN DATE = "; YY$;
    IF DAYS < }100\mathrm{ THEN PRINT "O";
    IF DAYS < 10 THEN PRINT "0";
    PRINT LTRIM$ (STR$ (DAYS))
ELSE
' Convert Julian to Gregorian
    YY$ = LEFT$(DTE$, 2)
    Y = VAL(YY$)
    D = VAL (MID$ (DTE$, 3, 3))
    M = 1
    IF Y MOD 4 = 0 THEN MONTH (2) = 29
    WHILE D > MONTH (M)
        D = D - MONTH (M)
        M = M + I
    WEND
    PRINT "GREGORIAN DATE = ";
    PRINT RIGHT$(STR$(100 + M), 2); "/";
    PRINT RIGHT$(STR$(100 + D), 2); "/";
    PRINT YY$
END IF
```

```
'3.6
' This program will convert a number from one base to another.
'
INPUT "Enter base of first number:"; BASE1
INPUT "Enter number:"; NUM1$
INPUT "Enter base of output:"; BASE2
' Convert Num1$ to base 10 number Num1V
FOR I = 1 TO LEN(NUM1$)
    CH$ = MID$(NUM1$, I, 1)
    DIGIT = ASC(CH$) - ASC("O")
    IF DIGIT > 9 THEN DIGIT = DIGIT - 7
    POWER = 1
    FOR J = 1 TO LEN(NUM1$) - I
            POWER = POWER * BASE1
        NEXT J
        NUM1V = NUM1V + DIGIT * POWER
NEXT I
' Convert Num1V to Base2 number
J = INT (LOG (NUM1V) / LOG(BASE2))
FOR I = J TO 0 STEP -1
        POWER = 1
        FOR K = 1 TO I: POWER = POWER * BASE2: NEXT K
        X = INT (NUM1V / POWER)
        NUMOUT$ = MID$("O123456789ABCDEF", X + 1, 1) + NUMOUT$
        NUM1V = NUM1V - X * POWER
NEXT I
PRINT NUMOUT$
```

13.7
' This program will SHELL sort numbers generated.
'
DIM X (-1093 TO 8000)
NUM $=8000:$ MAX $=7$
INPUT "Enter seed $X(0): " ; X(0)$
POW = 1
FOR I = 1 TO 20: POW = POW * 2: NEXT I
FOR I = 1 TO 8000
$Q=\operatorname{INT}((69069 * X(I-1)) / P O W)$ $X(I)=69069 * X(I-I)-P O W * Q$
NEXT I
' Shell sort routine
INCR (MAX) = 1
FOR I = MAX - 1 TO 1 STEP - 1
$\operatorname{INCR}(I)=3 * \operatorname{INCR}(I+1)+1$
NEXT I
FOR I = 1 TO MAX
INCREMENT = INCR (I)
FOR J = 1 TO INCREMENT LAST $=$ INCREMENT $+J$ WHILE LAST <= NUM
$P=$ LAST
$T=X(P)$
$\mathrm{X}(1-$ INCREMENT $)=T$
WHILE $\mathrm{T}<\mathrm{X}(\mathrm{P}$ - INCREMENT) $X(P)=X(P-$ INCREMENT $)$ $P=P$ - INCREMENT
WEND
$X(P)=T$
LAST $=$ LAST + INCREMENT WEND
NEXT J
NEXT I
' Display every 1000 th number in ascending order FOR I = 1 TO INT (NUM / 1000)

PRINT USING "\#\#\#\#"; I * 1000; PRINT "TH NUMBER ="; X(I * 1000)
NEXT I

```
'3.8
' This program will compute the volume of a sphere using PI.
'
DEFINT A-Z
PII$ = "3141592653589793238462643383279502884"
PI2$ = "1971693993751058209749445923078164062"
PI3$ = "8620899862803482534211706798214808651"
PI$ = PII$ + PI2$ + PI3$
DIM PROD(120)
INPUT "Enter N:"; N
INPUT "Enter radius:"; RADIUS
' Assign digits of PI to Array PI()
L = LEN(PI$)
FOR I = 1 TO L
    PROD (I) = VAL(MID$(PI$, L - I + I, I))
NEXT I
FOR I = 1 TO 3: A(I) = RADIUS: NEXT I
A(4)=4
' Multiply PI by Radius (3 times) then by 4
FOR I = 1 TO 4
    FOR J = 1 TO L
        PROD(J) = PROD(J) * A (I) + C
        C = INT(PROD(J) / 10)
        PROD (J) = PROD (J) - C * 10
        NEXT J
        WHILE C > 0
            CC = INT(C / 10)
            L = L + 1
            PROD(L) = C - CC * 10
            C = CC
        WEND
NEXT I
' Divide the product by 3
FOR I = L TO 1 STEP -1
        PR = PROD(I) + R * 10
        PROD(I) = INT(PR / 3)
        R = PR - PROD(I) * 3
NEXT I
IF PROD (L) = 0 THEN L = L - 1
' Display the Volume with the decimal point.
FOR I = L TO 111 - N STEP -1
    IF I = 110 THEN PRINT ".";
    PRINT USING "#"; PROD(I);
NEXT I
```

```
'3.9
' This program will display the barcode of an address.
DATA 7,4,2,1,0
FOR I = 1 TO 5: READ VALUE (I) : NEXT I
INPUT "Enter address 1:"; ADDR1$
INPUT "Enter address 2:"; ADDR2$
' Extract Zip+4 or Zip from 2nd line of address
L = LEN(ADDR2$)
I = L
WHILE MID$(ADDR2$, I, 1) <> " ": I = I - I: WEND
IF L - I = 10 THEN
    BARCODE$ = MID$(ADDR2$, I + 1, 5) + MID$(ADDR2$, L - 3, 4)
ELSE
    BARCODE$ = MID$(ADDR2$, L - 4, 5)
END IF
' Extact possible Zip+4 and/or next 2 Delivery points
IF MID$(ADDR1$, 1, 8) = "P.O. BOX" THEN
    L = LEN (ADDR1$)
    I = L
    WHILE MID$(ADDR1$, I, 1) <> " ": I = I - 1: WEND
    FOR J = 1 TO 4 - (L - I): ZIP4$ = ZIP4$ + "0": NEXT J
    ZIP4$ = ZIP4$ + MID$(ADDR1$, I + 1, L - I)
    DPOINT$ = MID$(ZIP4$, 3, 2)
ELSE
    ZIP4$ = "0000"
    ADDR1$ = "0" + ADDR1$
    P = INSTR(1, ADDR1$, " ")
    DPOINT$ = MID$(ADDR1$, P - 2, 2)
END IF
IF LEN(BARCODE$) = 5 THEN BARCODE$ = BARCODE$ + ZIP4$
BARCODE$ = BARCODE$ + DPOINT$
' Calculate Check Digit for 12-digit Barcode and display
FOR I = 1 TO 11
    SUM = SUM + VAL (MID$(BARCODE$, I, 1))
NEXT I
CHECKDIG = 10 - (SUM MOD 10)
IF CHECKDIG = 10 THEN CHECKDIG = 0
BARCODE$ = BARCODE$ + CHR$ (CHECKDIG + 48)
PRINT SPACE$ (12); "DELIVERY POINT BAR CODE = "; BARCODE$
PRINT
' Display Fram bars and encoded Barcode
PRINT "!";
FOR I = 1 TO 12
    DIG = VAL (MID$ (BARCODE$, I, 1))
    NUMBARS = 0
    IF DIG = 0 THEN DIG = 11 ' Exception for 0 = 7 + 4
    FOR J = 1 TO 5
    IF (DIG >= VALUE (J)) AND (NUMBARS < 2) THEN
        PRINT "!";
        DIG = DIG - VALUE (J)
        NUMBARS = NUMBARS + 1
    ELSE
        PRINT " ";
```

```
        END IF
    NEXT J
NEXT I
PRINT "!"
FOR I = 1 TO 62: PRINT "!"; : NEXT I
'3.10
' This program produces a 3 x 3 magic square.
INPUT "Enter first number:"; FIRSTNUM
INPUT "Enter increment:"; INC
INPUT "Enter number:"; NUM1
INPUT "Enter row, col:"; ROW, COL
POS1 = (ROW - 1) * 3 + COL
INPUT "Enter number:"; NUM2
INPUT "Enter row, col:"; ROW, COL
POS2 = (ROW - 1) * 3 + COL
NUMBER = 7
FOR I = 1 TO NUMBER + 2
    NUM = FIRSTNUM + (I - 1) * INC
    SUM = SUM + NUM
    IF NUM <> NUM1 AND NUM <> NUM2 THEN J = J + 1: S(J) = NUM
NEXT I
MNUM = SUM / 3
' Permute 7 numbers in 3x3 array
FOR N7 = 1 TO 7: H = 6: GOSUB ShiftNums
    FOR N6 = 1 TO 6: H = 5: GOSUB ShiftNums
        FOR N5 = 1 TO 5: H = 4: GOSUB ShiftNums
        FOR N4 = 1 TO 4: H = 3: GOSUB ShiftNums
            FOR N3 = 1 TO 3: H = 2: GOSUB ShiftNums
                FOR N2 = 1 TO 2: J = 0
                    FOR I = 1 TO 9
                        Place 2 entered numbers in correct positions
                                IF I = POS1 THEN
                            SS(I) = NUM1
                                ELSE
                                IF I = POS2 THEN
                                SS(I) = NUM2
                                ELSE
                                J = J + 1: SS(I) = S(J)
                                END IF
                        END IF
                NEXT I
                MAGICN = -1
                Check if row elements sum to Magic Number
                FOR J = 0 TO 2
                        SUM = SS(J * 3 + 1) + SS(J * 3 + 2) + SS(J * 3 + 3)
                        IF SUM <> MNUM THEN MAGICN = 0
                NEXT J
                Check if column elements sum to Magic Number
                FOR J = 1 TO 3
                    IF SS(J) + SS(J + 3) + SS(J + 6) <> MNUM THEN MAGICN = 0
                NEXT J
```

```
' Check if diagonal elements sum to Magic Number
    IF MAGICN THEN
            IF (SS (1) + SS(5) + SS(9) = MNUM) THEN
                IF (SS(3) + SS(5) + SS(7) = MNUM) THEN
                FOR J = 0 TO 2
                        FOR K = 1 TO 3
                        PRINT USING "###"; SS(J * 3 + K);
                        NEXT K: PRINT
                NEXT J
                        PRINT
                        PRINT "MAGIC NUMBER ="; MNUM: END
                END IF
                END IF
                END IF
                SWAP S(NUMBER), S(NUMBER - 1)
            NEXT N2
        NEXT N3
        NEXT N4
    NEXT N5
NEXT N6
NEXT N7: END
' Subroutine to shift numbers in array
ShiftNums:
    TEMP = S (NUMBER - H)
    FOR J = NUMBER - H TO NUMBER - 1
        S(J) = S(J + 1)
    NEXT J
    S (NUMBER) = TEMP
    RETURN
```

