FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '93 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program displays six lines with "GTEDS".
FOR I = 1 TO 6
    FOR J = 1 TO 7 - I
        PRINT "GTEDS"; SPACE$(I);
    NEXT J
    PRINT
NEXT I
```

'1. 2
' This program displays the number of programmers placed.
INPUT "Enter N:"; N
INPUT "Enter $\mathrm{M}:$ "; M
PRINT N * 15 - M; "PROGRAMMERS"
'1.3
' This program will format the number N million with commas.
'
INPUT "Enter N:"; N
PRINT USING "\#\#,\#\#\#,\#\#\# ACCESS LINES"; N * 1000000!
'1. 4
' This program will total the \# of students on 5 USF campuses.
DATA Tampa,st. Petersburg,Fort Myers,Lakeland, Sarasota
FOR I = 1 TO 5
READ CAMPUS\$
PRINT "Enter \# at "; CAMPUS\$; ":";
INPUT NUM
TOTAL $=$ TOTAL + NUM
NEXT I
PRINT TOTAL; "STUDENTS"
'1. 5
' This program will determine if person qualifies for ISOP.
'
INPUT "Enter name:"; NAME\$
INPUT "Enter level:"; LEVEL
INPUT "Enter desire:"; DESIRE\$
PRINT NAME\$; " IS ";
IF (LEVEL < 5) OR (DESIRE\$ = "NO") THEN PRINT "NOT ";
PRINT "A POSSIBLE CANDIDATE FOR ISOP"

```
'1.6
' This program will display preferred skills for curriculum.
'
INPUT "Enter curriculum:"; CURR$
IF CURR$ = "MVS/COBOL" THEN
    PRINT "COBOL"
    PRINT "JCL"
    PRINT "MVS/ESA"
    PRINT "TSO/ISPF"
    PRINT "VSAM"
    PRINT "ANSI SQL"
    PRINT "DB2"
    PRINT "IMS"
ELSE
    PRINT "C"
    PRINT "UNIX"
    PRINT "ANSI SQL"
    PRINT "OSF/MOTIF"
    PRINT "SHELL PROGRAMMING"
END IF
'1.7
' This program will print the first N letters of alphabet.
'
INPUT "Enter N:"; N
FOR I = 1 TO N
    PRINT CHR$(64 + I);
NEXT I
'1.8
' This program will calculate the increase in salary.
'
INPUT "Enter salary:"; SALARY
INPUT "Enter rating:"; LEVEL$
SELECT CASE LEVEL$
    CASE "EXCELLENT": INCREASE = SALARY * .1
    CASE "ABOVE AVERAGE": INCREASE = SALARY * . 07
    CASE "GOOD": INCREASE = SALARY * . 05
END SELECT
PRINT USING "NEW SALARY = $#####.##"; SALARY + INCREASE
'1.9
' This program will display a Service Order
'
DATA INSTALL,CHANGE,RECORDS,OUT,FROM,TO
INPUT "Enter order: "; ORDER$
CH$ = LEFT$ (ORDER$, 1)
IF LEN(ORDER$) > 1 THEN PRINT CH$: END
READ A$
WHILE LEFT$(A$, 1) <> CH$: READ A$: WEND
PRINT A$
```

'1.10
' This program will compute a GPA for 5 classes.
'
NUM $=5$
FOR I = 1 TO 5
INPUT "Enter grade:"; G\$ SELECT CASE G\$

CASE "A": SUM = SUM + 4
CASE "B": SUM = SUM + 3
CASE "C": SUM = SUM + 2
CASE "D": SUM = SUM + 1
CASE "W": NUM = NUM - 1
END SELECT
NEXT I
PRINT USING "GPA = \#.\#\#\#"; SUM / NUM

```
'2.1
' This program will randomly generate #S between X and Y.
'
RANDOMIZE TIMER
INPUT "Enter N:"; N
INPUT "Enter X, Y:"; X, Y
IF X < Y THEN MIN = X: MAX = Y ELSE MIN = Y: MAX = X
FOR I = 1 TO N
    X = INT(RND (3) * (MAX - MIN + 1)) + MIN
    IF X < O THEN PRINT " ";
    PRINT STR$(X) ;
NEXT I
'2.2
' This program will sort names according to their title.
DATA P, PA,SA,SE,SSE,ASE,SASE
FOR I = 1 TO 7: READ TITLES$(I) : NEXT I
INPUT "Enter N:"; N
FOR I = 1 TO N
    INPUT "Enter name:"; NAM$(I)
    INPUT "Enter title:"; TITLE$
    NAM$(I) = NAM$(I) + " - " + TITLE$
    J = 1
    WHILE TITLES$(J) <> TITLE$: J = J + 1: WEND
    L(I) = J
NEXT I
FOR I = 1 TO N - 1
    FOR J = I + I TO N
        IF L(I) <= L(J) OR (L(I) = L(J) AND NAM$ (I) > NAM$ (J)) THEN
                SWAP NAM$ (I), NAM$ (J)
                SWAP L(I), L(J)
            END IF
    NEXT J
NEXT I
FOR I = 1 TO N: PRINT NAM$(I) : NEXT I
```

```
'2. 3
', This program will foramt a COBOL declaration.
'
DIM FIELD$ (15)
I = 0
WHILE (FIELD$(I) > "") OR (I = 0)
    I = I + I
    INPUT "Enter field:"; FIELD$(I)
WEND
FOR J = 1 TO I - 1
        LEVEL$ = MID$ (FIELD$ (J) , 1, 2)
        IF LEVEL$ = "O1" THEN
            INC = 0
        ELSE
            IF LEVEL$ > PREVLEVEL$ THEN INC = INC + 4
            IF LEVEL$ < PREVLEVEL$ THEN INC = INC - 4
        END IF
        PRINT SPACE$ (INC);
        PRINT FIELD$ (J)
        PREVLEVEL$ = LEVEL$
NEXT J
'2.4
' This program will translate a word and calculate blocks.
'
INPUT "Enter word:"; WORD$
NUM$ = ""
FOR I = 1 TO LEN(WORD$)
    NUM = ASC(MID$(WORD$, I, I)) - ASC("A") + I
    NUM$ = NUM$ + MID$ (STR$ (NUM), 2)
NEXT I
PRINT "NUMBER = "; NUM$
BLOCKS = 1
LASTDIGIT = VAL (MID$ (NUM$, 1, 1))
FOR I = 2 TO LEN (NUM$)
    DIGIT = VAL (MID$ (NUM$, I, 1))
    IF DIGIT MOD 2 <> LASTDIGIT MOD 2 THEN BLOCKS = BLOCKS + 1
    LASTDIGIT = DIGIT
NEXT I
PRINT "BLOCKS ="; BLOCKS
```

```
'2.5
' This program will display N formatted telephone #s.
I
INPUT "Enter N:"; N
FOR I = 1 TO N
    INPUT "Enter #:"; NUM$(I)
NEXT I
TOTAL = 1: NUM$(I + 1) = SPACE$ (10)
FOR I = 1 TO N
    NPA$ = MID$ (NUM$ (I), 1, 3)
    NXX$ = MID$ (NUM$ (I) , 4, 3)
    LIN$ = MID$ (NUM$ (I), 7, 4)
    PRINT NPA$; "-"; NXX$; "-"; LIN$;
    NEXTNPA$ = MID$ (NUM$ (I + 1), 1, 3)
    NEXTNXX$ = MID$ (NUM$ (I + 1), 4, 3)
    IF NPA$ <> NEXTNPA$ THEN
            PRINT " TOTAL FOR NPA OF "; NPA$; " = "; TOTAL
            PRINT : TOTAL = 1
        ELSE
            TOTAL = TOTAL + 1
            IF NXX$ <> NEXTNXX$ THEN PRINT
        END IF
        PRINT
NEXT I
```

```
'2.6
' This program will calculate product bought minus coupons.
'
WHILE PROD$(I) <> "9"
    I = I + I
    INPUT "Enter product:"; PROD$(I)
    IF PROD$(I) <> "9" THEN INPUT "Enter price:"; PRIC(I)
WEND
NUMPROD = I - 1
PRINT
DO UNTIL COUP$(J) = "9"
    J = J + 1
    INPUT "Enter coupon:"; COUP$(J)
    IF COUP$(J) <> "9" THEN INPUT "Enter discount:"; DISC(J)
LOOP
NUMCOUP = J - 1
FOR I = 1 TO NUMPROD
    MAXDISC = 0
    FOR J = 1 TO NUMCOUP
        IF PROD$(I) = COUP$(J) AND DISC(J) > MAXDISC THEN
            MAXDISC = DISC(J): IND = J
        END IF
    NEXT J
    TOTAL = TOTAL + PRIC(I) - MAXDISC
    COUP$(IND) = "*"
NEXT I
PRINT : PRINT "TOTAL = $";
IF TOTAL < 10 THEN PRINT USING "#.##"; TOTAL
IF TOTAL >= 10 THEN PRINT USING "##.##"; TOTAL
```

```
'2.7
' This program will display dates in other formats.
INPUT "Enter format:"; format$
INPUT "Enter date:"; DAT$
SELECT CASE format$
        CASE "ISO"
            YYYY$ = MID$(DAT$, 1, 4)
            MM$ = MID$ (DAT$, 6, 2)
            DD$ = MID$(DAT$, 9, 2)
        CASE "AMERICAN"
            MM$ = MID$ (DAT$, 1, 2)
            DD$ = MID$ (DAT$, 4, 2)
            YYYY$ = MID$(DAT$, 7, 4)
        CASE "EUROPEAN"
            DD$ = MID$ (DAT$, 1, 2)
            MM$ = MID$(DAT$, 4, 2)
            YYYY$ = MID$(DAT$, 7, 4)
END SELECT
IF format$ <> "ISO" THEN
    PRINT "ISO = "; YYYY$; "-"; MM$; "-"; DD$
END IF
IF format$ <> "AMERICAN" THEN
    PRINT "AMERICAN = "; MM$; "-"; DD$; "-"; YYYY$
END IF
IF format$ <> "EUROPEAN" THEN
    PRINT "EUROPEAN = "; DD$; " - "; MM$; " - "; YYYY$
END IF
'2.8
' This program will reverse the words in 1 or 2 sentences.
INPUT "Enter sentence:"; SENT$
NUM = 1: WORD$ (NUM) = "": I = 1
WHILE I <= LEN(SENT$)
        CH$ = MID$ (SENT$, I, 1)
        IF CH$ = "." THEN
            FOR J = NUM TO 1 STEP -1
                IF J < NUM THEN PRINT " ";
                    PRINT WORD$(J);
            NEXT J
            PRINT ". ";
            NUM = 0: I = I + I
        ELSE ' -- NOT A PERIOD
            IF CH$ <> " " THEN
            WORD$ (NUM) = WORD$ (NUM) + CH$
            ELSE
                NUM = NUM + 1: WORD$(NUM) = ""
            END IF
        END IF
        I = I + I
WEND
```

```
'2.9
' This program will print 4 smallest #s in a 4 x 4 matrix.
'
DIM B(16)
FOR I = 1 TO 4
    PRINT USING "Enter row #:"; I;
    INPUT A(I, 1), A(I, 2), A(I, 3), A(I, 4)
NEXT I
FOR I = 1 TO 4
    FOR J = 1 TO 4
                B((I - I) * 4 + J) = A(I, J)
        NEXT J
NEXT I
'
FOR I = 1 TO 15
    FOR J = I + 1 TO 16
        IF B(I) > B(J) THEN SWAP B(I), B(J)
    NEXT J
NEXT I
'
K=1: B (0) = -99
WHILE (NUM < 4) OR (B (K) = B(K - 1))
    ONEDISP = 0
    IF B (K) <> B (K - 1) THEN
        PRINT
        NUM = NUM + 1
        PRINT USING "#"; NUM;
        PRINT ". SMALLEST ="; B (K) ; "OCCURS AT ";
        FOR I = 1 TO 4
            FOR J = 1 TO 4
                IF B (K) = A(I, J) THEN
                    IF ONEDISP THEN PRINT ", "; ELSE ONEDISP = 1
                    PRINT USING "(#"; I; : PRINT USING ",#"; J;
                    PRINT ")";
                    END IF
            NEXT J
        NEXT I
    END IF
    K = K + I
WEND
```

```
'2.10
' This program will print # of days between two dates.
'
DATA 31,28,31,30,31,30,31,31,30,31,30,31
DIM MONTH(12): FOR I = 1 TO 12: READ MONTH(I): NEXT I
INPUT "Enter month:"; M
INPUT "Enter day:"; D
INPUT "Enter year:"; Y
' October 25, 1967
FOR I = 1 TO 9
        DAYS2 = DAYS2 + MONTH(I)
NEXT I
DAYS2 = DAYS2 + 25
'
FOR I = 1967 TO Y - 1
    DAYS = DAYS + 365
    IF I MOD 4 = 0 THEN DAYS = DAYS + 1
NEXT I
IF (Y MOD 4 = 0) AND (M > 2) THEN DAYS = DAYS + 1
FOR I = 1 TO M - 1
    DAYS = DAYS + MONTH(I)
NEXT I
DAYS = DAYS + D
PRINT DAYS - DAYS2; "DAYS"
```

'3.1
' This program displays GTEDS squares relative to cursor.
' Cursor can be moved up, left, down, right: I, J, K, M.
CLS
$\mathrm{R}=5: \quad \mathrm{C}=5: \mathrm{K} \$=" \mathrm{"}$
WHILE K\$ < "1" OR K\$ > "4"
LOCATE R, C: PRINT "\#": K\$ = ""
WHILE K\$ = "": K\$ = INKEY\$: WEND
IF K\$ >= "I" AND K\$ <= "M" THEN
LOCATE R, C: PRINT " "
IF K\$ = "I" THEN R = R - 1
IF K\$ = "M" THEN R = $\mathrm{R}+1$
IF K\$ = "J" THEN C = C - 1
IF K\$ = "K" THEN C = C + 1
END IF
WEND
X = ASC(K\$) - ASC("0")
IF $\mathrm{X}=1$ THEN $\mathrm{A}=1: \mathrm{B}=0$
IF $X=2$ THEN $A=1: B=-1$
IF $X=3$ THEN $A=-1: B=-1$
IF $X=4$ THEN $A=-1: B=0$
IF ($\mathrm{R}+5$ * $\mathrm{A}>24$) OR ($\mathrm{R}+5$ * A < 1) THEN
PRINT "OFF THE SCREEN": END
ELSE
IF ($\mathrm{C}+9$ * $\mathrm{B}+9$ > 80) OR ($\mathrm{C}+9$ * $\mathrm{B}<1$) THEN PRINT "OFF THE SCREEN": END

ELSE

LOCATE R + 1 * A, C + 8 * B: PRINT "G T E D S"
LOCATE R + 2 * A, C + 8 * B: PRINT "T D"
LOCATE R + 3 * A, C + 8 * B: PRINT "E "; X; " E"
LOCATE R + 4 * A, C + 8 * B: PRINT "D T" LOCATE R + 5 * A, C + 8 * B: PRINT "S D E T G" END IF
END IF

```
13.2
' This program will solve an equation with +,-,*, or /.
'
INPUT "Enter value:"; V1$
INPUT "Enter symbol:"; S1$
INPUT "Enter value:"; V2$
INPUT "Enter symbol:"; S2$
INPUT "Enter value:"; V3$
IF S1$ = "=" THEN
    S1$ = S2$: S2$ = "="
    X$= V1$: V1$ = V2$: V2$ = V3$: V3$ = X$
END IF
' Equation is now of the form V1 [op] V2 = V3
N1 = VAL(V1$)
N2 = VAL(V2$)
N3 = VAL(V3$)
PRINT "X =";
SELECT CASE S1$
        CASE "+"
            IF V1$ = "X" THEN PRINT N3 - N2
            IF V2$ = "X" THEN PRINT N3 - N1
            IF V3$ = "X" THEN PRINT N1 + N2
        CASE "-"
            IF V1$ = "X" THEN PRINT N3 + N2
            IF V2$ = "X" THEN PRINT N1 - N3
            IF V3$ = "X" THEN PRINT N1 - N2
        CASE "*"
        IF V1$ = "X" THEN PRINT N3 / N2
        IF V2$ = "X" THEN PRINT N3 / N1
        IF V3$ = "X" THEN PRINT N1 * N2
        CASE "/"
            IF V1$ = "X" THEN PRINT N3 * N2
            IF V2$ = "X" THEN PRINT N1 / N3
            IF V3$ = "X" THEN PRINT N1 / N2
END SELECT
```

```
'3.3
' This program prints combinations of digits summing to #.
INPUT "Enter digits:"; DIGITS$
INPUT "Enter sum:"; SUM
NEWSUM = INT(SUM / 10) * 8 + (SUM MOD 10)
LAST = LEN(DIGITS$)
FOR I = 1 TO LAST
    DIGIT(I) = VAL(MID$(DIGITS$, I, I))
NEXT I
'
POWER = 1
FOR I = 1 TO LAST: POWER = POWER * 2: NEXT I
POWER = POWER - 1
'
FOR I = 1 TO POWER
    J = 1
    WHILE (A(J) = 1)
        A(J) = 0: J = J + 1
    WEND
    A(J) = 1
    TOTAL = 0
    FOR J = 1 TO LAST
        IF A(J) = 1 THEN TOTAL = TOTAL + DIGIT(J)
    NEXT J
    ONEPRINT = 0
    IF TOTAL = NEWSUM THEN
        FOR J = 1 TO LAST
            IF A(J) = 1 THEN
                    IF ONEPRINT THEN PRINT "+"; ELSE ONEPRINT = 1
                    PRINT USING "#"; DIGIT(J);
                END IF
        NEXT J
        PRINT " ="; SUM
    END IF
NEXT I
'3.4
' This program will decompose a large integer into primes.
'
DIM A(80), Q(80)
INPUT "Enter number:"; LONGNUM$
L = LEN (LONGNUM$)
FOR I = 1 TO L
    A(I) = VAL(MID$(LONGNUM$, I, 1))
NEXT I
PRIME = 2: POWER = 0
FIRSTFACTOR = 1: QUOTIENTISO = 0
WHILE NOT QUOTIENTISO
' Check if LongNum (Array A) is divisble by Prime
    NUM = 0
    FOR I = 1 TO L
        NUM = NUM * 10 + A(I)
        Q(I) = INT(NUM / PRIME)
```

```
        NUM = NUM - Q(I) * PRIME
    NEXT I
    IF NUM = 0 THEN
            Prime divided LongNum
    I = I
    WHILE (Q (I) = 0) AND (I <= L): I = I + I: WEND
    QUOTIENTISO = (I = L) AND (Q (L) = I)
    L = L - I + I
        Copy Quotient into array A to be divided again
        FOR J = 1 TO L
            A(J) = Q(J + I - I)
        NEXT J
        POWER = POWER + 1
        ELSE
            Prime did not divide LongNum
        IF POWER >= }1\mathrm{ THEN GOSUB DisplayFactor
        GOSUB GetNextPrime
        END IF
WEND
GOSUB DisplayFactor: END
' Display Factor
DisplayFactor:
    IF FIRSTFACTOR THEN FIRSTFACTOR = 0 ELSE PRINT " * ";
    PRINT MID$ (STR$ (PRIME), 2);
    IF POWER > 1 THEN PRINT "^"; MID$ (STR$ (POWER), 2);
    POWER = 0
    RETURN
' Get next prime
GetNextPrime:
    IF PRIME = 2 THEN PRIME = 3: RETURN
    ISPRIME = 0
    WHILE ISPRIME = 0
        PRIME = PRIME + 2
        ISPRIME = 1
        FOR J = 3 TO INT(SQR(PRIME))
        IF PRIME MOD J = 0 THEN ISPRIME = 0
    NEXT J
    WEND
    RETURN
```

13.5
' This program will find words in a 12 x 11 array of letters.
DIM A\$ (12) , B\$ (12)
A\$ (1) = "DATAADFBAAM": A\$ (2) = "JARBJCEDFOI"
A\$ $(3)=$ "REAEEXEVDBC": A\$ $(4)=$ "JESUSDEERNR"
A\$ $(5)=$ "FABUUNMIEMO": A\$ $(6)=$ "LLMNSOIPTKC"
A\$ (7) = "POQRSITRUOH": A\$ (8) = "ABUVKWSXPPI"
A\$ $(9)=$ "SOYZCPULMLP": A\$ (10) = "CCISABCDOAM"
A\$ (11) = "AEFGRHIJCRM": A\$ (12) = "LKLETTEKSID"
' String together the columns instead of rows
FOR I = 1 TO 11
$B \$(I)=" "$
FOR J = 1 TO 12

```
    B$(I) = B$(I) + MID$ (A$ (J), I, I)
    NEXT J
NEXT I
INPUT "Enter word:"; WORD$(1)
L = LEN(WORD$ (1))
' Reverse word
WORD$(2) = ""
FOR I = 1 TO L
    WORD$ (2) = WORD$ (2) + MID$(WORD$ (1), L - I + 1, 1)
NEXT I
    Find words horizontally, (frontwards and backwards)
J = 0
WHILE (COL = 0) AND (J < 2)
    J = J + 1: ROW = 0
    WHILE (ROW < 12) AND (COL = 0)
        ROW = ROW + 1
        COL = INSTR(1, A$ (ROW), WORD$ (J))
    WEND
WEND
IF COL = 0 THEN
    ROW = 0: J = 0
ELSE
    IF J = 1 THEN C1 = COL: C2 = COL + L - 1
    IF J = 2 THEN C1 = COL + L - 1: C2 = COL
    R1 = ROW: R2 = ROW
    GOTO DisplayCoordinates
END IF
' Find words vertically, (frontwards and backwards)
WHILE (ROW = 0) AND (J < 2)
    J = J + 1: COL = 0
    WHILE (COL < 11) AND (ROW = 0)
        COL = COL + 1
        ROW = INSTR(1, B$ (COL), WORD$ (J))
    WEND
WEND
IF ROW = 0 THEN END
IF J = 1 THEN R1 = ROW: R2 = ROW + L - 1
IF J = 2 THEN R1 = ROW + L - 1: R2 = ROW
C1 = COL: C2 = COL
'
' Display coordinates
DisplayCoordinates:
    PRINT USING "FIRST LETTER: (##"; R1;
    PRINT USING ", ##"; C1; : PRINT ")"
    PRINT USING "LAST LETTER: (##"; R2;
    PRINT USING ", ##"; C2; : PRINT ")"
```

```
'3.6
' This program will solve two inequality equations.
INPUT "Enter equation 1:"; EQ1$
INPUT "Enter logical op:"; OP$
INPUT "Enter equation 2:"; EQ2$
S1$ = MID$(EQ1$, 2, 1)
S2$ = MID$(EQ2$, 2, 1)
N1 = VAL(MID$ (EQ1$, 3, 1))
N2 = VAL(MID$(EQ2$, 3, 1))
NOS1 = (S1$ = "<" AND S2$ = ">" AND OP$ = "AND" AND N1 <= N2)
NOS2 = (S1$ = ">" AND S2$ = "<" AND OP$ = "AND" AND N1 >= N2)
IF NOS1 OR NOS2 THEN PRINT "NO SOLUTION": END
ALL1 = (S1$ = "<" AND S2$ = ">" AND OP$ = "OR" AND N1 > N2)
ALL2 = (S1$ = ">" AND S2$ = "<" AND OP$ = "OR" AND N1 < N2)
IF ALL1 OR ALL2 THEN PRINT "ALL INTEGERS": END
IF N < N2 THEN MIN = N1: MAX = N2 ELSE MIN = N2: MAX = N1
' Check for finite solution, and if less than 6 integers
FIN1 = (S1$ = "<" AND S2$ = ">" AND OP$ = "AND" AND N1 > N2)
FIN2 = (S1$ = ">" AND S2$ = "<" AND OP$ = "AND" AND N1 < N2)
IF (FIN1 OR FIN2) THEN
    IF MAX - MIN > 7 THEN
            A = MIN + 1: B = MIN + 3: GOSUB DisplayNumbers
            PRINT "...";
            A = MAX - 3: B = MAX - 1: GOSUB DisplayNumbers: END
    END IF
    A = MIN + 1: B = MAX - 1: GOSUB DisplayNumbers: END
END IF
' Check for infinite # of negative solutions
IF (S1$ = "<" AND S2$ = "<" AND OP$ = "AND") THEN
    PRINT "...";
    A = MIN - 3: B = MIN - 1: GOSUB DisplayNumbers: END
END IF
    Check for infinite # of positive solutions
IF (S1$ = ">" AND S2$ = ">" AND OP$ = "AND") THEN
    A = MAX + 1: B = MAX + 3
    PRINT "...": END
END IF
' Check for infinite # of positive and negative solutions
IN1 = (S1$ = ">" AND S2$ = "<" AND OP$ = "OR" AND N1 > N2)
IN2 = (S1$ = "<" AND S2$ = ">" AND OP$ = "OR" AND N1 < N2)
IF (IN1 OR IN2) THEN
    PRINT "...";
    A = MIN - 3: B = MIN - 1: GOSUB DisplayNumbers
    PRINT " ";
    A = MAX + 1: B = MAX + 3: GOSUB DisplayNumbers
    PRINT "...";
END IF
END
' Display numbers
DisplayNumbers:
    IF A < O THEN PRINT LEFT$(STR$(A), 2);
    IF A >= 0 THEN PRINT USING "#"; A;
    FOR I = A + 1 TO B
        PRINT ",";
```

```
        IF I < 0 THEN PRINT LEFT$ (STR$ (I), 2);
        IF I >= 0 THEN PRINT USING "#"; I;
    NEXT I
    RETURN
```

```
'3.7
' This program will print the sum and product of 2 matrices.
I
BASE$ = "0123456789ABCDEF"
FOR I = 1 TO 2
    FOR J = 1 TO 3
        FOR K = 1 TO 3
            PRINT USING "Enter Mat#"; I; : PRINT " (";
            PRINT USING "#"; J; : PRINT ","; : PRINT USING "#"; K;
                    INPUT ")"; NUM$
                    L = LEN (NUM$) : TENS = 0
                IF L = 2 THEN
                    TENS = (INSTR(1, BASE$, MID$(NUM$, 1, 1)) - 1) * 16
                    END IF
                    ONES = INSTR(1, BASE$, MID$(NUM$, L, 1)) - 1
                    MAT(I, J, K) = TENS + ONES
        NEXT K
        NEXT J
NEXT I
' Compute sum
PRINT "SUM =";
FOR I = 1 TO 3
    FOR J = 1 TO 3
        SUM = MAT(1, I, J) + MAT (2, I, J)
        PRINT SPACE$ (6 - LEN (HEX$ (SUM)) ) ; HEX$ (SUM) ;
    NEXT J
    PRINT
    IF I < 3 THEN PRINT SPACE$(5);
NEXT I
PRINT
' Compute product
PRINT "PRODUCT =";
FOR I = 1 TO 3
    FOR J = 1 TO 3
        PROD = 0
        FOR K = 1 TO 3
            PROD = PROD + MAT(1, I, K) * MAT(2, K, J)
        NEXT K
        PRINT SPACE$ (6 - LEN (HEX$ (PROD))) ; HEX$ (PROD) ;
    NEXT J
    PRINT
    IF I < 3 THEN PRINT SPACE$(9);
NEXT I
```

```
13.8
',This program will find three 3-digit primes.
DEFINT A-Z
DIM P(200)
NUM = 101: PNUM = 0
WHILE NUM < }99
    SQ = INT (SQR (NUM)) : I = 3
    WHILE (I <= SQ) AND (NUM MOD I > 0): I = I + 1: WEND
    IF I > SQ THEN
            N2 = NUM
            D1 = INT(N2 / 100)
            N2 = N2 - D1 * 100
            D2 = INT (N2 / 10)
            D3 = N2 - D2 * 10
            IF NOT (D1 = O OR D2 = 0 OR D3 = 0) THEN
                IF NOT (D1 = D2 OR D2 = D3 OR D1 = D3) THEN
                PNUM = PNUM + 1: P(PNUM) = NUM
                END IF
            END IF
    END IF
    NUM = NUM + 2
WEND
FOR I = 1 TO PNUM - 2
    FOR J = I + 1 TO PNUM - 1
        FOR K = J + 1 TO PNUM
                TOT = P(I) + P(J) + P(K)
                IF TOT > 1234 THEN
                    P1$ = MID$(STR$ (P (I)), 2)
                    P2$ = MID$(STR$ (P (J)), 2)
                    P3$= MID$(STR$ (P (K)), 2)
                    PCAT$ = P1$ + P2$ + P3$
                        FOR L = 1 TO 9: A(L) = 0: NEXT L: L = 0
                        WHILE (L < 9) AND (A (X) < 2)
                        L = L + 1
                        X = VAL (MID$ (PCAT$, L, 1))
                        A(X) = A(X) + 1
                        WEND
                    IF A(X) < 2 THEN
                        SUM$ = MID$(STR$ (TOT), 2)
                        D1 = (MID$ (SUM$, 1, 1) < MID$ (SUM$, 2, 1))
                        D2 = (MID$ (SUM$, 2, 1) < MID$ (SUM$, 3, 1))
                        D3 = (MID$ (SUM$, 3, 1) < MID$ (SUM$, 4, 1))
                        IF D1 AND D2 AND D3 THEN
                    PRINT P(I); "+"; P(J); "+"; P(K); "="; TOT
                        DISP = DISP + 1: IF DISP = 7 THEN END
                        END IF
                    END IF
                END IF
        NEXT K
        NEXT J
NEXT I
```

```
13.9
' This program will produce a binary search tree.
DIM AS (8, 256)
DATA 0,15,7,3,1,0,0,0,0,0
FOR I = 0 TO 8: READ COLINC(I) : NEXT I
CLS : INPUT "Enter word(s) :"; WORDS$
CLS
FOR I = 1 TO LEN(WORDS$)
    CH$ = MID$(WORDS$, I, 1)
    IF CH$ <> " " THEN
            R = 0: C = 1: COL = 40
' Traverse tree until an empty node exists
            WHILE A$ (R, C) <> ""
                IF CH$ <= A$ (R, C) THEN
                C = 2 * C - 1: COL = COL - COLINC(R + 1) - 1
                    ELSE
                        C = 2 * C
                PREVCOL = COL
                COL = COL + COLINC (R + I) + I
            END IF
            R = R + 1
        WEND
        A$ (R, C) = CH$
        LOCATE R + 1, COL
        IF R = O THEN
            PRINT CH$;
        ELSE
            IF C MOD 2 = 1 THEN
                    PRINT CH$; STRING$(COLINC(R), " - ") ; "+";
                ELSE
                    LOCATE R + 1, PREVCOL
                    PRINT "+"; STRING$(COLINC(R), " - ") ; CH$;
            END IF
        END IF
    END IF
NEXT I
```

```
'3.10
' This program will determine the values F(X) converges.
DIM F#(5000)
FOR I = 1 TO 2
    IF I = 1 THEN INC# = . 01 ELSE INC# = .1
    DIVERGE = 0: FACTOR# = 1: FOUND = 0
    WHILE (K# < 10) AND NOT FOUND
        K# = K# + INC# / FACTOR#
        X = 1: F# (X) = K#
        IF FACTOR# < 20 THEN ITER = 250 * FACTOR# ELSE ITER = 5000
        WHILE (X < ITER) AND NOT DIVERGE
            X = X + I
            F#(X) = EXP(LOG(K#) * F# (X - 1))
            DIVERGE = (F#(X) > 9.9)
        WEND
        IF I = 1 THEN
            FX2# = FX1#: FX1# = FX0#: FX0# = F# (X)
            IF (FX2# > FX1#) AND (FX1# < FX0#) THEN
                K# = K# - 2 * INC# / FACTOR#
                IF (FX2# - FX1#) < .0005 THEN FOUND = -1: FX# = FX1#
                FX0# = FX2#: FX1# = FX0#
                    FACTOR# = FACTOR# * 2
            END IF
        ELSE
            Find Maximum point
            IF DIVERGE THEN
                DIVERGE = 0
                K# = K# - INC# / FACTOR#
                    IF INC# / FACTOR# < . 000005 THEN FOUND = -1
                    FACTOR# = FACTOR# * 2
            ELSE
                    FX# = F#(X)
            END IF
        END IF
    WEND
    IF I = 1 THEN PRINT "MINIMUM"; ELSE PRINT "MAXIMUM";
    PRINT " VALUE: ";
    IF I = 1 THEN
            PRINT USING "F(X) = #.###"; FX#; : PRINT " OCCURS WHEN ";
            PRINT USING "K = #.###"; K# + INC# / FACTOR#
    ELSE
            PRINT USING "F(X) = #.#"; FX#; : PRINT " OCCURS WHEN ";
            PRINT USING "K = #.#####"; K# + INC# / FACTOR#
    END IF
NEXT I
```

