FLORIDA HIGH SCHOOLS COMPUTING COMPETITION '86 BASIC PROGRAM SOLUTIONS

```
'1.1
' This program will print "THIS IS THE EASIEST PROGRAM!".
CLS
A$ = "THIS IS THE EASIEST PROGRAM!"
LOCATE 12, (80 - LEN(A$)) / 2: PRINT A$
'1.2
' This program will display the sum, difference, and product.
INPUT "Enter two numbers: "; A, B
PRINT "SUM = "; A + B
PRINT "DIFFERENCE = "; A - B
PRINT "PRODUCT = "; A * B
'1.3
' This program will sum 1 + (1/2)^^2 + (1/3)^3 + (1/4)^4 + ...
' until the difference between it and the next term is within E.
'
INPUT "Enter test value E: "; E
I = 1
SUM = 1: LSUM = 0
WHILE (SUM - LSUM) >= E
    I = I + I
    TRM = 1 / I: PROD = 1
    FOR J = 1 TO I: PROD = PROD * TRM: NEXT J
    LSUM = SUM
    SUM = SUM + PROD
WEND
PRINT USING "#.######"; LSUM
```

```
'1.4
' This program will print a check given name and amount.
'
CLS
INPUT "Enter first name: "; F$
INPUT "Enter middle name: "; M$
INPUT "Enter last name: "; L$
I$ = LEFT$ (M$, 1)
INPUT "Enter amount: "; AMOUNT$
' Display border
LOCATE 6, 1
PRINT STRING$(39, "*")
FOR I = 1 TO 9
    LOCATE 6 + I, 1: PRINT "*"
    LOCATE 6 + I, 39: PRINT "*"
NEXT I
PRINT STRING$(39, "*")
'
LOCATE 8, 3: PRINT "BEN'S TOWING SERVICE"
LOCATE 9, 3: PRINT "4563 WRECKER AVENUE"
LOCATE 10, 3: PRINT "WAVERLY, ARKANSAS 45632"
LOCATE 12, 4: PRINT "PAY TO THE ORDER OF ";
PRINT F$; " "; I$; ". "; L$
LOCATE 14, 4: PRINT "THE SUM OF $"; AMOUNT$
LOCATE 22, 1
'1.5
' This program will determine which prisoners may be released.
DIM CELL(100)
FOR I = 1 TO 100: CELL(I) = 1: NEXT I 'Cells initially open
FOR I = 2 TO 100
    J = 1
    WHILE J <= 100
        CELL(J) = 1 - CELL(J): J = J + I
        WEND
NEXT I
FOR I = 1 TO 100
    IF CELL(I) = 1 THEN PRINT "CELL"; I
NEXT I
```

```
'1.6
' This program will determine how much money accumulates.
' Double precision variables (#) are needed.
'
INPUT "Enter monthly investment: "; MONTH#
INPUT "Enter end of year deposit: "; DEP#
INPUT "Enter annual rate of interest: "; RATE#
PRINT
RATE# = RATE# / (12 * 100) 'Rate per month in yr in percent
FOR YEAR = 1 TO 20
    FOR J = 1 TO 12
        SUM# = SUM# + MONTH#
        SUM# = SUM# + RATE# * SUM#
        NEXT J
        SUM# = SUM# + DEP#
NEXT YEAR
SUM# = INT(SUM# * 100 + .5) / 100
PRINT "AMOUNT AT END OF YEAR 20 IS $"; LTRIM$(STR$(SUM#))
```

'1.7
' This program will drop g in words ending with ing or ings.
,
INPUT "Enter sentence: "; S\$
S\$ = S\$ + " "
L = LEN(S\$): W\$ = ""
FOR I = 1 TO L
CH\$ $=\operatorname{MID}(\mathrm{S} \$, \mathrm{I}, ~ 1)$
IF CH\$ <> " " THEN
W\$ = W\$ + CH\$
ELSE
LENW = LEN(W\$)
IF LENW >= 4 THEN
EN1\$ = MID\$ (W\$, LENW - 2, 3)
EN2\$ = MID\$ (W\$, LENW - 3, 4)
IF EN1\$ = "ING" THEN W\$ = MID\$ (W\$, 1, LENW - 1)
IF EN2\$ = "INGS" THEN W\$ = MID\$ (W\$, 1, LENW - 2) + "S"
END IF
PRINT W\$; " ";
W\$ = " "
END IF
NEXT I

```
'1.8
' This program simulates the population growth of rabbits.
I
INPUT "Enter initial population: "; INIT
INPUT "Enter point of over population: "; OP
PRINT
POP = INIT
DIEING = (POP >= OP)
FOR MONTH = 1 TO 23
    IF DIEING THEN
            IF POP < 2 / 3 * INIT THEN
                POP = POP + POP * . 2: DIEING = 0
            ELSE
                POP = POP - POP * . 15
            END IF
        ELSE
            IF POP >= OP THEN
                DIEING = -1: INIT = INT (POP)
                POP = POP - POP * . 15
            ELSE
                POP = POP + POP * . 2
            END IF
        END IF
        PRINT "POPULATION FOR MONTH"; MONTH; "IS"; INT(POP + .5)
NEXT MONTH
```

'1.9
' This program doubles every e that appears as a single e.
INPUT "Enter sentence: "; SENT\$
FOR I = 1 TO LEN (SENT\$)
CH\$ = MID\$ (SENT\$, I, 1)
NCH\$ = MID\$ (SENT\$, I + 1, 1)
IF CH\$ = "E" AND LCH\$ <> "E" AND NCH\$ <> "E" THEN PRINT "E";
PRINT CH\$;
LCH\$ = CH\$
NEXT I
IF NCH\$ = "E" AND LCH\$ <> "E" THEN PRINT "E";
PRINT NCH\$
'1.10
' This program will display common elements of two lists. '
DIM A(12), B(12), C(12)
FOR I = 1 TO 12
PRINT "Enter"; I; "of 12: "; : INPUT A(I)
NEXT I
FOR I = 1 TO 11
PRINT "Enter"; I; "of 11: "; : INPUT B(I)
NEXT I
'
FOR I = 1 TO 12
FOR J = 1 TO 11
IF $A(I)=B(J)$ THEN $C(I)=1$
NEXT J
NEXT I
FOR I = 1 TO 12 FOR J = I + 1 TO 12

IF A(I) = A(J) AND C(J) > O THEN C(J) =C(J) + 1 NEXT J
NEXT I
FOR I = 1 TO 12
IF C(I) = 1 THEN PRINT A(I); " ";
NEXT I

```
'2.1
' This program will right justify sentence within }65\mathrm{ columns.
COL = 65
INPUT "Enter sentence: "; SENT$
SENT$ = SENT$ + " ": L = LEN (SENT$)
I = 1: WN = 1: WORD$(WN) = "": TOTCH = 0
WHILE I <= L
        CH$ = MID$ (SENT$, I, 1)
        IF CH$ <> " " THEN
            WORD$ (WN) = WORD$ (WN) + CH$
        ELSE
            IF WORD$(WN) <> "" THEN
                    TOTCH = TOTCH + LEN (WORD$ (WN))
                    WN = WN + I: WORD$(WN) = ""
        END IF
    END IF
    I = I + I
WEND
WN = WN - I
SPAVE = INT((COL - TOTCH) / (WN - 1))
EXTRA = (COL - TOTCH) - (SPAVE * (WN - 1))
FOR I = 1 TO WN
    IF I <= EXTRA THEN EX = 1 ELSE EX = 0
    PRINT WORD$(I); SPACE$(SPAVE + EX);
NEXT I
'2. 2
' This program will produce a repeating patern of XXX ---.
INPUT "Enter total number of X's and -'s: "; TOTALXD
INPUT "Enter number of X's: "; NUMX
INPUT "Enter number of rows: "; ROWS
X1$ = "": X2$ = "": D1$ = "": D2$ = ""
FOR I = 1 TO NUMX
    X1$ = X1$ + "X"
    D2$ = D2$ + "-"
NEXT I
FOR I = 1 TO TOTALXD - NUMX
    X2$ = X2$ + "X"
    D1$ = D1$ + "-"
NEXT I
FOR ROW = 1 TO ROWS
    IF ROW - INT(ROW / 2) * 2 = 1 THEN
        FOR I = 1 TO 4: PRINT X1$; D1$; : NEXT I
        ELSE
            FOR I = 1 TO 4: PRINT D2$; X2$; : NEXT I
        END IF
        PRINT
NEXT ROW
```

```
'2. 3
' This program will code or decode a message.
ST1$ = "ZXCVBNMASDFGHJKLQWERTYUIOP "
ST2$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ "
WHILE OP < 3
    PRINT
    PRINT "I) ENCODE"
    PRINT "2) DECODE"
    PRINT "3) END"
    INPUT "Choose: "; OP
    IF OP = 3 THEN END
    INPUT "Enter message: "; MESSAGE$
    FOR I = 1 TO LEN(MESSAGE$)
        CH$ = MID$ (MESSAGE$, I, 1)
        IF CH$ <> " " THEN
            IF OP = 1 THEN
                CH$ = MID$(ST1$, ASC(CH$) - 64, 1)
            ELSE
                J = INSTR (ST1$, CH$)
                CH$ = MID$ (ST2$, J, 1)
            END IF
        END IF
        PRINT CH$;
    NEXT I
    PRINT
WEND
'2.4
' This program finds the unique mode of a set of }15\mathrm{ numbers.
DIM A(15), C(15)
FOR I = 1 TO 15
    PRINT "Enter number"; I; ": "; : INPUT A(I)
NEXT I
MAX = 1
FOR I = 1 TO 14
    C(I) = 1
    FOR J = I + I TO 15
        IF A(I) = A(J) THEN
                C(I) = C(I) + I
                IF C(I) > MAX THEN MAX = C(I)
        END IF
    NEXT J
NEXT I
MODEXIST = 0
FOR I = 1 TO 14
    IF C(I) = MAX THEN
        IF MODEXIST THEN PRINT "NO UNIQUE MODE": END
        MODE = A(I): MODEXIST = -1
    END IF
NEXT I
IF MODEXIST THEN PRINT "MODE IS"; MODE: END
PRINT "NO UNIQUE MODE"
```

```
'2.5
' This program simulates transactions to savings a account.
I
RATE = . 07
INPUT "Enter original balance: "; BALANCE
WHILE OP < 4
    PRINT
    PRINT "1. MAKE A DEPOSIT"
    PRINT "2. MAKE A WITHDRAWAL"
    PRINT "3. CREDIT INTEREST"
    PRINT "4. END"
    INPUT "Enter option: "; OP
    PRINT
    IF OP = 1 THEN
        INPUT "Enter amount to deposit: "; DEP
        PRINT USING "BALANCE BEFORE TRANSACTION $####.##"; BALANCE
        BALANCE = BALANCE + DEP
        PRINT "MAKE A DEPOSIT"
    ELSEIF OP = 2 THEN
        INPUT "Enter amount to withdraw: "; WIT
        PRINT USING "BALANCE BEFORE TRANSACTION $####.##"; BALANCE
        BALANCE = BALANCE - WIT
        PRINT "MAKE A WITHDRAWAL"
    ELSEIF OP = 3 THEN
        PRINT USING "BALANCE BEFORE TRANSACTION $####.##"; BALANCE
        CREDIT = BALANCE * RATE / 12
        CREDIT = INT(CREDIT * 100 + .5) / 100
        PRINT USING "CREDIT INTEREST OF $##.##"; CREDIT
        BALANCE = BALANCE + CREDIT
    END IF
    IF OP < 4 THEN PRINT "NEW "; ELSE PRINT "FINAL ";
    PRINT USING "BALANCE $####.##"; BALANCE
WEND
```

```
'2.6
' This program will sum two positive big numbers.
'
DIM A(39), B(39), C(39)
INPUT "ENTER FIRST NUMBER: "; ST1$
INPUT "ENTER SECOND NUMBER: "; ST2$
L1 = LEN(ST1$): L2 = LEN(ST2$)
FOR I = 1 TO L1
    CH$ = MID$(ST1$, L1 - I + 1, 1)
    A(I) = VAL(CH$)
NEXT I
FOR I = 1 TO L2
    CH$ = MID$(ST2$, L2 - I + 1, 1)
    B(I) = VAL (CH$)
NEXT I
'
IF L1 > L2 THEN MAXL = L1 ELSE MAXL = L2
FOR I = 1 TO MAXL
    C(I) = A(I) + B(I) + CARRY
    IFC(I) > 9 THEN C(I) = C(I) - 10: CARRY = 1 ELSE CARRY = 0
NEXT I
IF CARRY = 1 THEN MAXL = MAXL + 1: C(MAXL) = 1
PRINT "SUM IS ";
FOR I = MAXL TO 1 STEP -1
    PRINT USING "#"; C(I);
NEXT I
```

```
'2.7
', This program will perform conversions.
DATA "INCHES","FEET","MILES","OUNCES","POUNDS","GALLONS"
FOR I = 1 TO 6: READ DEC$(I): NEXT I
DATA 2.54, 0.3048, 1.6093, 28.35, 0.4536, 3.7854
FOR I = 1 TO 6: READ CON(I) : NEXT I
DATA "CENTIMETERS", "METERS", "KILOMETERS", "GRAMS"
DATA "KILOGRAMS", "LITERS"
FOR I = 1 TO 6: READ MET$(I): NEXT I
WHILE OP <> 13
    PRINT
    FOR I = 1 TO 6
        PRINT I;
        IF I - INT(I / 2) * 2 = 1 THEN
            ST$ = MET$(INT((I + 1) / 2)) + " TO "
            ST$ = ST$ + DEC$(INT((I + 1) / 2))
            PRINT ST$; SPACE$(23 - LEN(ST$));
            PRINT USING "## "; I + 6;
            ST$ = MET$(INT((I + 7) / 2)) + " TO "
            ST$ = ST$ + DEC$(INT((I + 7) / 2))
        ELSE
            ST$ = DEC$(INT(I / 2)) + " TO "
            ST$ = ST$ + MET$(INT(I / 2))
            PRINT ST$; SPACE$(23 - LEN(ST$));
            PRINT USING "## "; I + 6;
            ST$ = DEC$(INT((I + 6) / 2)) + " TO "
            ST$ = ST$ + MET$(INT((I + 6) / 2))
        END IF
        PRINT ST$
    NEXT I
    PRINT SPACE$(26); "13 END"
    INPUT "Enter option: "; OP
    IF OP < 13 THEN
        IF OP - INT(OP / 2) * 2 = 1 THEN
            PRINT "Enter number of "; MET$(INT((OP + 1) / 2));
            INPUT ": "; X
            Y = X / CON(INT((OP + 1) / 2))
            PRINT USING "THIS IS EQUIVALENT TO ###.### "; Y;
            PRINT DEC$(INT((OP + 1) / 2))
        ELSE
            PRINT "Enter number of "; DEC$(INT(OP / 2));
            INPUT ": "; X
            Y = X * CON(INT(OP / 2))
            PRINT USING "THIS IS EQUIVALENT TO ###.### "; Y;
            PRINT MET$(INT(OP / 2))
        END IF
    END IF
WEND
```

```
'2.8
' This program will generate a mortgage amortization.
' Double precision variables are needed.
'
INPUT "Enter principal: "; PRINC#
INPUT "Enter % rate of interest: "; RATE#
INPUT "Enter term in years: "; YEARS
INPUT "Enter # of month in year for first payment: "; MONTH
RATE# = RATE# / (12 * 100): AMOUNT# = 1
FOR I = 1 TO YEARS * 12: AMOUNT# = AMOUNT# * (1 + RATE#): NEXT I
PAYMENT# = (RATE# * AMOUNT#) / (AMOUNT# - 1) * PRINC#
C = MONTH - 1: OLDP# = PRINC#
RATE# = RATE# * 12
PRINT "INTEREST PRINCIPAL"
'
FOR I = 1 TO YEARS * 12
    MI# = OLDP# * RATE# / 12
    MP# = PAYMENT# - MI#
    OLDP# = OLDP# - MP#
    PRINT USING "$###.##"; MI#; : PRINT SPACE$(10);
    PRINT USING "$#####.##"; OLDP#
    C = C + I: YI# = YI# + MI#
    IF C - INT(C / 12) * 12 = 0 THEN
        PRINT
        PRINT USING "YEAR'S INTEREST $#####.##"; YI#
        TI# = TI# + YI#: YI# = 0
        PRINT
        A$ = INPUT$ (1)
    END IF
NEXT I
IF MONTH <> 1 THEN
    PRINT
    PRINT USING "YEAR'S INTEREST $#####.##"; YI#
    TI# = TI# + YI#
END IF
PRINT USING "TOTAL INTEREST $#####.##"; TI#
PRINT USING "MONTHLY PAYMENT $#####.##"; PAYMENT#
```

```
'2.9
' This program calculates the value of sine(x) by a series.
' Double precision variables are needed.
'
INPUT "Enter N degrees: "; N
PI# = 3.1415926535#
IF N > 180 THEN X# = PI# * ((360 - N) / 180)
IF N <= 180 THEN X# = PI# * (N / 180)
POWER = -1
FOR I = 1 TO 6
    POWER = POWER + 2: FACT = 1
    FOR J = 1 TO POWER: FACT = FACT * J N NEXT J
    TRM# = 1
    FOR J = 1 TO POWER: TRM# = TRM# * X#: NEXT J
    TRM# = TRM# / FACT
    IF I - INT (I / 2) * 2 = 1 THEN
        SUM# = SUM# + TRM#
    ELSE
        SUM# = SUM# - TRM#
    END IF
NEXT I
IF N > 180 THEN SUM# = -1 * SUM#: X# = PI# * (N / 180)
PRINT "PARTIAL SUM ="; : IF SUM# < O THEN PRINT " ";
PRINT USING "##.#######"; SUM#
PRINT "ACTUAL SINE ="; : IF SIN(X#) < 0 THEN PRINT " ";
PRINT USING "##.#######"; SIN(X#)
'2.10
' This program will convert a Roman Numeral to Arabic form.
DATA M, 1000, D,500, C,100, L,50, X,10, V,5, I, 1
FOR I = 1 TO 7: READ RN$(I), RV(I): NEXT I
INPUT "Enter Roman Numeral: "; ROMNUM$
L = LEN (ROMNUM$): I = 1: ARABIC = 0
WHILE I < L
    FOR J = 1 TO 7
    IF MID$ (ROMNUM$, I, 1) = RN$ (J) THEN IND1 = J
    IF MID$(ROMNUM$, I + 1, 1) = RN$ (J) THEN IND2 = J
NEXT J
    IF IND1 <= IND2 THEN
        ARABIC = ARABIC + RV(INDI)
    ELSE
        ARABIC = ARABIC + RV(IND2) - RV(IND1): I = I + I
    END IF
    I = I + I
WEND
IF I = L THEN
    FOR J = 1 TO 7
        IF MID$ (ROMNUM$, I, 1) = RN$ (J) THEN IND1 = J
    NEXT J
    ARABIC = ARABIC + RV(IND1)
END IF
PRINT "ARABIC ="; ARABIC
```

```
'3.1
',This program produces montly calendars for the year 1986.
DATA JANUARY,FEBRUARY,MARCH,APRIL,MAY,JUNE,JULY
DATA AUGUST,SEPTEMBER,OCTOBER,NOVEMBER,DECEMBER
DATA 31,28,31,30,31,30,31,31,30,31,30,31
DATA S,M,T,W,T,F,S
DIM MO$(12), DAYS(12)
FOR I = 1 TO 12: READ MO$(I): NEXT I
FOR I = 1 TO 12: READ DAYS(I): NEXT I
FOR I = 1 TO 7: READ D$(I): NEXT I
CLS : PRINT SPACE$(12); "1986": PRINT
FOR M = 1 TO 12
    IF M > 1 THEN CLS
    PRINT SPACE$(13 - INT(LEN (MO$ (M)) / 2)); MO$ (M) : PRINT
    FOR I = 1 TO 7: PRINT " "; D$(I); " "; : NEXT I
    PRINT
'
    IF M = 1 THEN COL = 4
    IF COL > 1 THEN PRINT SPACE$((COL - 1) * 4);
    FOR DAY = 1 TO DAYS(M)
        PRINT USING "##"; DAY; : PRINT " ";
        IF COL < 7 THEN COL = COL + 1 ELSE COL = 1: PRINT
    NEXT DAY
    A$ = "": WHILE A$ = "": A$ = INKEY$: WEND
NEXT M
```

```
'3.2
```

'3.2
' This program finds the root of a 5th degree polynomial
' This program finds the root of a 5th degree polynomial
' Of the form Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F = 0.
' Of the form Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F = 0.
INPUT "Enter coefficients A,B,C,D,E,F: "; A, B, C, D, E, F
INPUT "Enter coefficients A,B,C,D,E,F: "; A, B, C, D, E, F
DEF FNY (Y) = C * Y ^ 3 + D * Y * Y + E * Y + F
DEF FNY (Y) = C * Y ^ 3 + D * Y * Y + E * Y + F
DEF FNP (X) = A * X ^ 5 + B * X ^ 4 + FNY(X)
DEF FNP (X) = A * X ^ 5 + B * X ^ 4 + FNY(X)
' This algorithm finds 1 and only 1 root (closest to x=0)
' This algorithm finds 1 and only 1 root (closest to x=0)
X1 = -1: X2 = 1
X1 = -1: X2 = 1
' Find sign change between X1 and X2
' Find sign change between X1 and X2
WHILE FNP(X1) * FNP(X2) > 0
WHILE FNP(X1) * FNP(X2) > 0
X1 = X1 - 1: X2 = X2 + 1
X1 = X1 - 1: X2 = X2 + 1
WEND
WEND
' Use binary search to find root
' Use binary search to find root
WHILE X2 - X1 > .000005
WHILE X2 - X1 > .000005
X = (X1 + X2) / 2
X = (X1 + X2) / 2
IF FNP(X) * FNP(X1) > 0 THEN X1 = X ELSE X2 = X
IF FNP(X) * FNP(X1) > 0 THEN X1 = X ELSE X2 = X
WEND
WEND
PRINT "ROOT = ";
PRINT "ROOT = ";
IF X < O THEN PRINT "-"; : X = -X
IF X < O THEN PRINT "-"; : X = -X
PRINT USING "\#.\#\#\#\#\#"; X

```
PRINT USING "#.#####"; X
```

13.3
' This program changes a number from one base to another. '
D\$ = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
INPUT "Enter base A: "; A
INPUT "Enter base B: "; B
INPUT "Enter original number: "; NUMST\$
PRINT : PRINT NUMST\$; " BASE"; A; "EQUALS ";
FOR I = 1 TO LEN(NUMST\$)
POW $=\operatorname{INT}(A$ ^ (LEN (NUMST\$) - I) + .01)
$\mathrm{N}=\mathrm{N}+(\operatorname{INSTR}(\mathrm{D}, \mathrm{MID}(\mathrm{NUMST}, \mathrm{I}, 1))-1)$ * POW
NEXT I
POW = 1
WHILE POW <= N
EX = EX + 1: POW = POW * B
WEND
EX = EX - 1
' Convert Num to Base B from Base 10
FOR I = EX TO 0 STEP -1
POW = POW / B
$\mathrm{X}=\operatorname{INT}(\mathrm{N} / \mathrm{POW}+\mathrm{.O1})$
PRINT MID\$ (D\$, X + 1, 1);
$\mathrm{N}=\mathrm{N}$ - X * POW
NEXT I
PRINT " BASE"; B

```
'3.4
' This progam will update customers account by SSN's.
DATA 234567890,"JOHN SMITH "
DATA "1234 ANYWHERE LANE, EXIST, KANSAS 66754 ",345.78
DATA 564783219,"GAIL HUSTON "
DATA "543 SOUTH THIRD, BIG TOWN, TEXAS 88642 ",2365.89
DATA 873421765,"TIM JONES
DATA "2387 PALM PLACE, NOME, ALASKA 77643 ",6754.76
DATA 543876543,"JILL RUPERTS"
DATA "4536 123RD STREET, TINY TOWN, MAINE 76765 ",45.18
DATA 345212342,"AL BROWN
DATA "PO BOX 234, TINSEL TOWN, CALIFORNIA 77654 ",3456.09
DATA 565656565,"KERMIT TEU
DATA "1234 LOST LANE, WIMPLE, WISCONSIN 66543 ",78.36
FOR I = 1 TO 6: READ SS$(I), N$(I), A$(I), B(I): NEXT I
INPUT "Enter SSN: "; SSN$
WHILE SSN$ <> "000000000"
    I = 1
    WHILE (SS$(I) <> SSN$) AND (I < 6): I = I + 1: WEND
    INPUT "Enter C for Charge or P for Payment: "; CH$
    INPUT "Enter amount of transaction: "; TRANS
    IF CH$ = "C" THEN B(I) = B(I) - TRANS
    IF CH$ = "P" THEN B(I) = B(I) + TRANS
    PRINT : PRINT USING "NEW BALANCE IS $####.##"; B(I)
    PRINT : INPUT "Enter SSN: "; SSN$
WEND
FOR I = 1 TO 5
    FOR J = I + 1 TO 6
        IF B(I) < B(J) THEN
            SWAP SS$(I), SS$(J)
            SWAP N$(I), N$(J)
            SWAP A(I), A(J)
            SWAP B(I), B(J)
        END IF
    NEXT J
NEXT I
PRINT
PRINT "SSN NAME ADDRESS"; SPACE$(13);
PRINT "BALANCE": PRINT
FOR I = 1 TO 6
    PR$ = SS$(I) + " " + N$(I) + " "
    L = LEN(PR$) - 1
    P1 = INSTR(A$(I), ",")
    P2 = INSTR(P1 + 1, A$(I), ",")
    PRINT PR$; LEFT$(A$(I), P1 - 1); SPACE$(21 - P1);
    PRINT USING "$####.##"; B(I)
    PRINT SPACE$(L); MID$(A$(I), P1 + 1, P2 - P1 - 1)
    PRINT SPACE$(L); MID$(A$(I), P2 + 1)
NEXT I
```

```
'3.5
', This program will print the product of 2 large decimals.
DIM A(30), B(30), PROD(50)
INPUT "Enter first number: "; ASTR$
INPUT "Enter second number: "; BSTR$
ADEC = INSTR(ASTR$, "."): BDEC = INSTR(BSTR$, ".")
ASTR$ = LEFT$(ASTR$, ADEC - 1) + RIGHT$ (ASTR$, LEN(ASTR$) - ADEC)
BSTR$ = LEFT$(BSTR$, BDEC - 1) + RIGHT$(BSTR$, LEN(BSTR$) - BDEC)
LENA = LEN(ASTR$): LENB = LEN(BSTR$)
RDIGITS = LENA - ADEC + LENB - BDEC + 2
FOR I = LENA TO 1 STEP -1
    A(LENA - I + 1) = VAL (MID$(ASTR$, I, 1))
NEXT I
FOR I = LENB TO 1 STEP -1
    B(LENB - I + 1) = VAL (MID$(BSTR$, I, 1))
NEXT I
FOR I = 1 TO LENB
        CARRY = 0
        FOR J = 1 TO LENA
            S = I + J - I
            PROD(S) = PROD(S) + B(I) * A(J) + CARRY
            CARRY = INT(PROD(S) / 10)
            PROD(S) = PROD(S) - CARRY * 10
        NEXT J
        IF CARRY > 0 THEN PROD (S + 1) = CARRY
NEXT I
PRINT "PRODUCT = ";
IF CARRY > 0 THEN S = S + 1
IF S <= RDIGITS THEN PRINT "O";
FOR I = S TO 1 STEP -1
    IF I = RDIGITS THEN PRINT ".";
    PRINT USING "#"; PROD(I);
NEXT I
```

13.6
' This program will determine if a \# can become palindrome. '
DIM B(50), REV(50)
INPUT "Enter number: "; NUMST\$
L = LEN (NUMST\$)
FOR I = 1 TO L
B(L - I + 1) = VAL (MID\$ (NUMST\$, I, 1))
NEXT I
TRY = 0: PAL = 0
WHILE (TRY <= 23) AND (NOT PAL)
PAL = -1
FOR I = 1 TO INT(L / 2)
IF $B(I)<>B(L-I+1)$ THEN PAL $=0$
NEXT I
' Add reverse of number to itself
IF NOT PAL THEN
FOR $I=1$ TO L: REV(I) $=B(L-I+1): N E X T I$
CARRY $=0$
FOR I = 1 TO L
$B(I)=B(I)+\operatorname{REV}(I)+$ CARRY
CARRY $=\operatorname{INT}(B(I) / 10)$
$B(I)=B(I)-C A R R Y * 10$
NEXT I
IF CARRY = 1 THEN L = L + $1: B(L)=1$
TRY = TRY + 1
END IF
WEND
IF NOT PAL THEN PRINT "CANNOT GENERATE A PALINDROME": END FOR I = L TO 1 STEP -1: PRINT USING "\#"; B(I); : NEXT I PRINT " IS A PALINDROME"

```
13.7
' This program will solve an N x N system of equations.
'
INPUT "Enter N: "; N
FOR ROW = I TO N
        PRINT "Enter coefficients for row"; ROW
        FOR COL = 1 TO N
            PRINT USING "CO#"; COL; : PRINT ": ";
            INPUT C(ROW, COL)
    NEXT COL
    INPUT "Enter constant: "; C(ROW, N + 1)
NEXT ROW
' Make main diagonals all ls with Os to the left
FOR ROW = 1 TO N
    DEN = C(ROW, ROW)
    FOR COL = ROW TO N + 1
        C(ROW, COL) = C(ROW, COL) / DEN
    NEXT COL
    FOR R = ROW + I TO N
        X = C(R, ROW)
        FOR COL = ROW TO N + 1
            C(R,COL) = C(R, COL) - X * C(ROW, COL)
        NEXT COL
    NEXT R
NEXT ROW
' Make 0s on the right of ls on main diagonal, not const
FOR ROW = N TO 1 STEP -1
    FOR R = ROW - 1 TO 1 STEP -1
        X = C(R, ROW)
        FOR COL = ROW TO N + I
            C(R,COL) = C(R,COL) - X * C(ROW, COL)
        NEXT COL
    NEXT R
NEXT ROW
' Display solution
PRINT "("; LTRIM$(STR$(INT (C(1, N + 1) + .1)));
FOR ROW = 2 TO N
    PRINT ", "; LTRIM$(STR$(INT(C(ROW, N + 1) + .1)));
NEXT ROW
PRINT ")"
```

'3. 8
' This program prints Kth, $2 *$ Kth, and $3 *$ Kth permutations.
INPUT "Enter word: "; A\$: INPUT "Enter K: "; KK: L = LEN(A\$)
FOR I = 1 TO L: A\$ (I) = MID\$ (A\$, I, 1) : NEXT I
' Alphabetize letters
FOR I = 1 TO L - 1 FOR J = I + 1 TO L
IF A\$ (I) > A\$ (J) THEN X\$ = A\$(I) : A\$ (I) = A\$ (J) : A\$ (J) = X\$
NEXT J
NEXT I
' Produce factorials $F(I)=(I-1)!$
FOR I = 1 TO L
$\mathrm{F}=1$
FOR J = 1 TO I - 1: F = F * J: NEXT J
$F(I)=F$
NEXT I
FOR T = 1 TO 3
$\mathrm{K}=\mathrm{KK} * \mathrm{~T}-1$
' Generate Kth permutation
FOR I = L TO 1 STEP -1
$\mathrm{X}=\mathrm{INT}(\mathrm{K} / \mathrm{F}(\mathrm{I}))$
FOR J = 1 TO L
IF A(J) = 0 THEN
$S=S+1:$ IF S > X THEN A(J) = 1: PRINT A\$ (J); : J = L
END IF
NEXT J
$S=0: K=K-F(I) * X$
NEXT I
FOR I = 1 TO L: A(I) = 0: NEXT I
PRINT " ";
NEXT T

```
'3.9
' This program will solve cryptarithm puzzle ABB - CB = DEF.
' F = 0 since B-B = 0. A=D+1 or A=D since CB is 2 digits,
' but A<>D. D>B, otherwise D=A. Since B<C, B<9, => E=10+B-C
FOR B = 1 TO 8
    FOR C = B + 1 TO 9
        FOR D = 1 TO 8
            F=0:A=D + 1: E = 10 + B - C
            IF A = B OR A = C OR A = D OR A = E OR A = F THEN PASS = 1
            IF B = C OR B = D OR B = E OR B = F OR C = D THEN PASS = 1
            IF C = E OR C = F OR D = E OR D = F THEN PASS = 1
            IF PASS = O THEN
                TOT = TOT + 1
                PRINT A * 100 + B * 10 + B; "-"; C * 10 + B; "=";
                    PRINT D * 100 + E * 10 + F; " NUMBER"; TOT
            ELSE
                    PASS = 0
            END IF
        NEXT D
    NEXT C
NEXT B
PRINT : PRINT " TOTAL NUMBER OF SOLUTIONS ="; TOT
```

'3.10
' This program will find all 2-digit integers equal to the sum
' of integers in which each digit 0-9 is used exactly once.
FOR I = 0 TO 8
Place digit I infront of 0 and sum the rest of the digits
SUM $=I * 10+0$
FOR J = 0 TO 9
IF (I <> J) AND (J <> 0) THEN
TRM $=J: S U M=S U M+J$
END IF
NEXT J
IF SUM <= 99 THEN
' Display sum followed by example sum process
PRINT SUM; "=";
PRINT I * 10 + 0 ;
FOR J = 0 TO 9
IF (I <> J) AND (J <> 0) THEN
TRM $=\mathrm{J}: ~ P R I N T$ "+"; J;
END IF
NEXT J
PRINT
END IF
NEXT I

